Fr 24

SOLUTIONS DE CHAUFFAGE DE L'AIR

- Réchauffeurs de liquides à circulation:
- Éléments chauffants flexibles en silicone:

Voir le catalogue 23

Voir le catalogue 25

Nous contacter

()	

 Section 1
 Sommaire

 Section 2
 Introduction historique et technique
 P1-16

 Section 3
 Listes des références
 P1

	Eléments chauf	fant utilisal	bles dans l'air, pour incorporation	P1-P10
		9SR	Résistances blindées nues avec bride, lcharge 1.2W/cm², ou 3W/cm² tube dia 10mm, pour chauffage par convection naturelle ou forcée	P3
		9SX	Résistances à ailettes à incorporer, avec raccord fileté M14, charge 3W/cm² et 4.5W/cm², pour chauffage par convection naturelle ou forcée. Finned tubular heaters, for incorporation, with M14 threaded fitting	P4
		9MN	Eléments radiants infra-rouge haute émissivité, émettant dans l'infrarouge long, corps noirs en carbure de silicium, résistant à la corrosion, forte résistance mécanique et gamme émissive de 3 à 6μm. Diamètres 12, 14, 17, 20mm, puissance moyenne 3W/cm². Température de surface 400 à 450°C@25°C	P5-P6
Section 4		9NN	Batteries terminales compactes, de conditionnement d'air, à incorporer, pour conduites ventilées, de 400 à 1200W	P7
		9NF	Batteries terminales de moyenne puissance, équipées d'éléments à ailettes en acier inoxydable, limiteur tripolaire à sécurité positive, à capillaire, incorporé. Raccordement sous boîtier aluminium IP65	P8
		9SQ	Sous-ensembles chauffants pour rénovation domestique, à incorporer. Avec thermostat, limiteur et interrupteur	P9
		9SY	Sous-ensembles chauffants avec résistance à ailettes pour rénovation domestique, à incorporer. Thermostat de régulation réglable, limiteur à disque et interrupteur lumineux	P10

	≅਼
	ä
	S
	S
	≧
	S
	S
ì	9
-	듬
	ŏ
	Ē
	<u></u>
	8
<	<u>a</u>
	Ħ
	ō
	≥ .
	ಠ
	Ō.
	7
٠.	ĭ
	듰
	۳
	듦
	<u>ത</u>
	ã
	Ξ.
	Ψ.
	2
	ਲ੍ਹ
	S
`	nuniques sans (
	5
	Ē
	₫
	Ε
	Ē
	ō
	0
	Ę
	0
	S
	نهٔ
	7
	≓
	=
	ပ္က
	2
	SS
	<u>ത</u>
	മ്പ
	S
	<u>ئة</u>
	S
	듰
-	ö
٠.	2
	5
	ट्ट
	S
	نة
	긁
- 1	≅
	<u>S</u>
- 8	耍
	ಠ
	<u> </u>
	g
٠.	ĕ
	e e
	ö
	notos et
	<u> </u>
	Q
	Š,
	듩
	SS
	S
	16
	25
	Ö
	Q
	S
•	=
	ts,
	5
	g
	5
	2
	10
	S
	nos
	sou at
	e de nos
	ite de nos
-	ante de nos
-	stante de nos
	instante de nos
-	constante de nos
	e constante de nos
	ue constante de nos
	ique constante de nos
	nnique constante de nos
	chnique constante de nos
	technique constante de nos
	n technique constante de nos
	ion technique constante de nos
	ution technique constante de nos
	olution technique constante de nos
	volution technique constante de nos
	l'evolution technique constante de nos
	e l'evolution technique constante de nos
	de l'evolution technique constante de nos
	on de l'evolution technique constante de nos
	son de l'evolution technique constante de nos
	aison de l'evolution technique constante de nos
	n raison de l'evolution technique constante de nos
	En raison de l'evolution technique constante de nos
	En raison de l'evolution technique constante de nos
	En raison de l'evolution technique constante de nos
	En raison de l'evolution technique constante de nos
	En raison de l'evolution technique constante de nos
	En raison de l'evolution technique constante de nos

	Conve	ecteurs con	nmerciaux et industriels	P1-P14
		9PF	Réchauffeurs d'armoire à ventilation forcée, - thermostat ou hygrostat de régulation externe - thermostat de régulation fixe incorporé - thermostat de régulation réglable incorporé	P3-P4
		9CG1	Résistances à ailettes sous capot, gamme compacte 110mm, pour incorporation. Tôlerie acier peint ou acier inoxydable. Montage au sol ou mural. Sans ventilateur. Limiteur unipolaire à capillaire incorporé. Sans thermostat de régulation. Raccordement sous boîtier aluminium peint. Ensemble IP65	P5
		9CG3	Résistances à ailettes sous capot, gamme 130mm pour incorporation. Tôlerie acier peint ou acier inoxydable. Montage au sol ou mural. Limiteur unipolaire à capillaire incorporé. Sans ventilateur ni thermostat de régulation, raccordement sous boîtier aluminium peint. Ensemble IP65.	P6
		9СН	Convecteurs ventilés et régulés, Gamme compacte 110mm. Tôlerie acier peint ou acier inoxydable. montage au sol ou mural, ensemble IP40. Avec thermostat réglable, limiteur à capillaire et interrupteur	P7
Section 5		9CL	Aérothermes muraux ventilés et régulés, soufflant vers le bas. Gamme compacte 110mm, protégés contre les chutes d'eau verticales. Tôlerie acier inoxydable uniquement. Montage mural, ensemble IP44. Avec thermostat réglable, limiteur à capillaire, et interrupteur	P8
		9CJ	Convecteurs ventilés et thermostatés, gamme 130mm. Tôlerie acier peint ou acier inoxydable. montage au sol ou mural, boitier de contrôle en PA66 avec fenêtre plombable. Régulation par thermostat et limiteur. 3 ventilateurs. Existe en IP65, sans ventilateurs	P9-P10
		9CK	Convecteurs ventilés avec régulation électronique, gamme 130mm. Tôlerie acier peint ou acier inoxydable. Montage au sol ou mural. Coffret de contrôle en PA66, avec fenêtre plombable. Régulation par régulateur électronique digital et limiteur électromécanique à capillaire. IP40. 3 ventilateurs. Existe en IP65 sans ventilateurs	P11-P12
		9CR	Aérothermes muraux gamme 130mm ventilés et régulés par thermostat, protégés contre les chutes d'eau verticales, soufflant vers le bas. Tôlerie acier inoxydable ou acier peint. montage mural, boitier de contrôle PA66 avec fenêtre. Limiteur à capillaire à réarmement manuel. IP44.3 fans	P13
	30	9CS	Aérothermes muraux ventilés avec régulation électronique, protégés contre les chutes d'eau verticales, soufflant vers le bas, gamme 130mm. Tôlerie acier inoxydable ou acier peint. Montage mural, boitier de contrôle PA66, avec fenêtre. Limiteur à capillaire à réarmement manuel. IP44	P14

réavis		Co	onvecteurs	industriels étanche	P1-P4
<mark>ent être modifiés sans p</mark>	Petits radiateurs électriques industriels, à convection naturelle, largeur 110mm étanchéité IP69K (lavable au laveur à eau chaude sous pression), résistance aux chocs IK10, à 1 ou 2 éléments chauffants à ailettes, 600W et 1200W.		P3		
ns engagement et peuw	Section 6		9CB	Radiateurs électriques industriels, à convection naturelle, largeur 130mm étanchéité IP69K (lavable au laveur à eau chaude sous pression), résistance aux chocs IK10, à 3 ou 6 éléments chauffants à ailettes, 1750W et 3500W.	P4
qués sar			Radiar	nts infrarouge	P1-P4
En raison de l'évolution technique constante de nos produits, les plans, dessins, photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis	Section 7		9МН	Radiant infrarouge, gamme compacte 110mm. Tôlerie acier peint ou acier inoxydable. Montage mural fixe ou orientable, ou suspendu. Elément en carbure de silicium dia 20mm radiant dans l'infrarouge long, de 3 à 6 μm. Avec réflecteur parabolique aluminium à haute réflectivité, ventilé.	P3
ns les pa		Systèmes de régula	ation et de	contrôle pour le réchauffage de l'air	P1-P12
actéristiques repris dar				Thermostats pour commande de réchauffage d'air, applications en convection	P3-P5
s, dessins, photos et car			Q7C	Hygrostat pour réchauffage d'armoire	P6
e nos produits, les plan	Section 8		3AE	Systèmes de contrôle de puissance, applications en convection	P7
echnique constante de			Y23 Y038G	Thermostats pour commande de réchauffage d'air, applications en rayonnement infrarouge	P8-P9
naison de l'évolution t			3AS 3AY	Système de contrôle de puissance, applications en rayonnement infra rouge	P10-P11

Mise à jour 2025/02/25

Section 2 Histoire résumée des éléments chauffants blindés et du réchauffage de l'air

peuvent être modifiés sans préavis <mark>les plans, dessins, photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et</mark>

En raison de

Histoire résumée des éléments chauffants blindés et du réchauffage de l'air

L'invention des éléments chauffants blindés, composés d'un tube en métal rétreint autour d'un fil chauffant boudiné, et dont l'isolation est réalisée par de la magnésie comprimée, fut une étape primordiale du développement de l'électrothermie. Par leur résistance mécanique, leur étanchéité, leur résistance à la corrosion, ces éléments sont la solution technique de chauffage la plus professionnelle. L'apparition de ces éléments chauffants, maintenant utilisés universellement est le résultat de la conjonction de différentes avancées techniques du début du 20ème siècle.

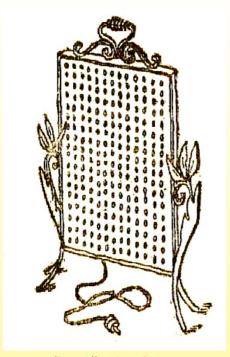
Au cours des deux dernières décennies du 19éme siècle, l'apparition du chauffage électrique avait démontré la nécessité de trouver des solutions fiables de conversion de l'électricité en chaleur. Les premières résistances chauffantes électrodomestiques étaient en fil de platine, (héritées des appareils de laboratoire), en maillechort ou même en fer. Les recherches portèrent sur des éléments résistifs avec une résistance plus importante et une bonne tenue en température.

Les 12 Octobre 1878, St. George Lane Fox-Pitt déposa en Angleterre le brevet 4043, dans lequel il développe l'utilisation de l'électricité pour l'éclairage et le chauffage. Ce brevet, faisant appel aux filaments en platine, resta sans suite pour le chauffage mais fut à la base du développement des ampoules électriques.

1895 Le Ferro-Nickel (document Ultimheat Museum)

En 1884, le Français Henri Marbeau, un des pionniers de la fabrication du Nickel en Nouvelle Calédonie et en France, fonde à Lizy sur Ourcq la société « Le Ferro-Nickel ». Il est le premier à obtenir des alliages de fer et de nickel suffisamment purs, et dont la teneur en nickel est contrôlée, pour être utilisés comme fils chauffants. Ces alliages (brevetés en 1884 et 1888) avec différentes proportions de nickel seront présentés à l'exposition de Paris de 1889. Leurtenue en température et leur résistivité sont sans commune mesure avec les fils utilisés jusqu'alors.

Entre 1888 et 1890, le développement exponentiel des lampes à incandescence, dont les supports de filament en carbone sont faits en platine provoque le triplement du prix de cette matière en 2 ans, passant de 900 à 2750 francs le kg, ce qui le rend trop cher pour les applications de chauffage.


Ironie de l'histoire, le carbone, abandonné rapidement dans les lampes à incandescence, revient maintenant, sous forme de fibres tressées, dans les éléments chauffants sous tube quartz rayonnants dans l'infra-rouge court.

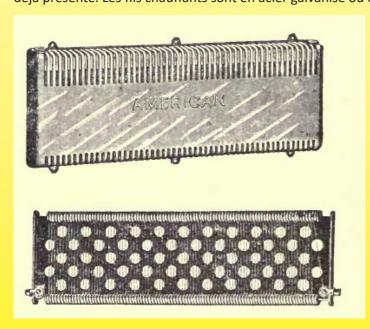
Dès 1890 des fils chauffants noyés dans un carton d'amiante sont utilisés pour des fers à repasser (Carpenter, USA). En 1891 Le fourneau électrique présenté par l'Autrichien Friedrich Wilhelm Schind 1er-Jenny utilise encore des fils chauffants en platine noyés dans un émail isolant. Il sera présenté à l'exposition mondiale de Chicago en 1893.

En 1891, le constructeur Anglais R. E. B. Crompton présente lors de l'exposition de Londres au Crystal Palace une poêle à frire et d'autres appareils chauffants à l'électricité (Qui seront présentés dans une catalogue en 1894 « Domestic Electric Machinery, Electrical Heating and Electrical Cooking Apparatus ») ou l'élément chauffant est un fil de cuivre en zig-zag noyé dans l'émail formant le fond de la poêle. Il s'avéra rapidement que les fils chauffant cassaient rapidement car le coefficient de dilatation de l'émail était inférieur à celui de la plaque métallique sur laquelle il était déposé. La même année, une solution similaire utilisée par La Carpenter Electric Company (St Paul, Minesotta) sur des bouilloires électriques connut les mêmes déboires.

Nous contacter www.ultimheat.com Cat24-2-2-3

Introduction historique et technique

Radiateur électrique Crompton (ca1895, document Ultimheat Museum)

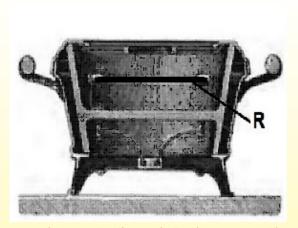


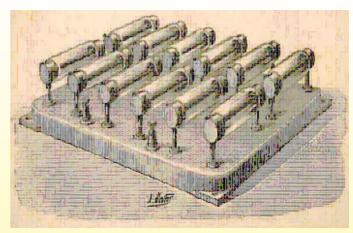
1898 Cuisinière électrique Grimm, brevet Schindler-Jenny (Document Ultimheat Museum)

En Suisse, la société Grimm et Cie développe au même moment une gamme de produits similaires sous licence de l'Autrichien Schindler-Jenny et Stuz, qui sera présentée à l'exposition de Chicago en 1893. La température maximale atteinte est alors de 250°C, car elle est limitée par la tenue des émaux isolants.

En 1893, l'écossais Alan MacMasters d'Edinbourg, proposa à Crompton de réaliser le premier toaster à fils chauffants nus en fer. Cet appareil, nommé L'Eclipse, produit vers 1894 fut un échec commercial, car les fils chauffants fondaient.

Vers 1894, le Théatre du Vaudeville, à Londres, fut le premier lieu public à être chauffé par des radiateurs électriques, mais à cette époque, le chauffage des tramways par des radiateurs électriques est déjà courant, car l'électricité y est déjà présente. Les fils chauffants sont en acier galvanisé ou en maillechort dit « German silver ».


1895 Radiateur de tramway, constitué de fils en maillechort tendus entre des isolants en porcelaine (extrait de « Electric heating », par Edwin J. Houston et A. E. Kennelly, 1895)


Extrait de la gamme des appareils électriques du familistère de Guise en 1897 (doc musée du chauffage Ultimheat)

La technique du fil chauffant émaillé sera appliquée en France sur les premiers appareils électriques du Familistère de Guise (Dequenne), présentés dans leur catalogue de 1897, sous licence Crompton, puis à l'exposition universelle de 1900, qui utilisera des fils en maillechort puis en ferronickel. La technologie des émaux a évoluée et les ruptures sont moins fréquentes.

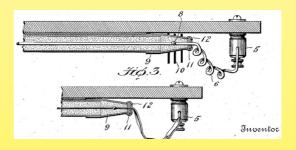
Introduction historique et technique

1898 Bûches électriques chauffantes Le Roy (document Ultimheat Museum)

La société française Parvillée Frères et Cle breveta et fabriqua à partir de 1899 des résistances chauffantes de forte puissance en métallo-céramique frittée (à base de nickel, quartz et kaolin), fonctionnant au rouge à l'air libre, ouvrant la voie aux premiers appareils de chauffage et de cuisson électriques professionnels, présentés en fonctionnement dans le restaurant La Feria à l'exposition universelle de Paris en 1900.

Ces éléments peuvent être considérés comme les ancêtres des résistances chauffantes en carbure de silicium utilisés actuellement dans les fours industriels.

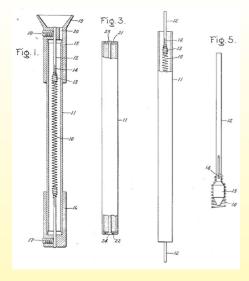
En 1898, le français Le Roy utilise comme élément chauffant une barre en « silicium graphitoïde » de 100 × 10 × 3mm entourée d'une enveloppe en verre dans laquelle est fait le vide, pour réaliser des bûches chauffantes de 80 watts.


La résistivité de cet élément est 230,000 fois plus importante que le fil en maillechort, et il supporte 800°C. Ces bûches chauffantes seront utilisées pendant une vingtaine d'années.

Vers 1902-1903 le fil chauffant en ferronickel remplace progressivement le fil en maillechort dans les applications nécessitant des températures de fonctionnement élevées. Les fils chauffants en ferronickel sont enroulés sur une âme céramique, en amiante, ou en mica, ou pris en sandwich entre deux couches d'email.

Le rapide développement des appareils électroménagers (fers à repasser, chauffe-eaux, radiateurs), et la demande pour des fils chauffants et des systèmes plus performants aiguillonna les recherches des constructeurs, en particulier aux USA, car ce pays était alors à la pointe de l'électrification domestique.

1923 Publicité pour le fil Nichrome (Document Ultimheat Museum)



1914 Brevet Wiegand, tube avec résistance droite isolée magnésie.

En Mars 1905, l'ingénieur américain Albert Leroy Marsh de Hoskins Manufacturing Co. à Detroit fit une découverte essentielle pour les résistances chauffantes: l'alliage de 80% de nickel et de 20% de chrome, qui sera ultérieurement nommé Nichrome, dont les caractéristiques de résistivité, inoxydabilité et de tenue en température permettent de réaliser des résistances chauffantes fiables et durables. (Brevet US N° 811859, Février 1906). Cet alliage Nichrome 80/20, supportant des températures permanentes de 900 à 1000°C, indispensables pour rayonner dans l'infra-rouge, permit de réaliser des résistances incandescentes dans l'air. A l'époque, aucune matière, à part le platine, dont le prix était devenu trop élevé, ne permettait de répondre à ce besoin.

Il permit de fabriquer en 1908 le premier grille-pain électrique avec résistances nues ou sous tube en quartz. (Résistances radiantes sous tube quartz, brevet déposé le 12 Janvier 1908 par William S Andrews). Ces résistances radiantes sous tube quartz seront les ancêtres des tubes quartz utilisés en chauffage infrarouge ainsi que dans les foyers de cuisson radiants.

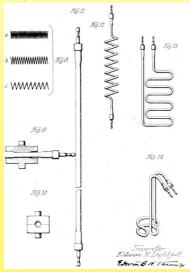
En Janvier 1914, Edwin L. Wiegand, jeune ingénieur américain déposa plusieurs brevets portant sur la fabrication en série de résistances chauffantes de fers à repasser. Il imagina pour les semelles de fer à repasser des fils chauffants positionnés dans un « ciment ou poudre comprimée» conducteur de la chaleur. Ce fut l'origine de la société Chromalox à Pittsburgh, qui commença alors la production en série de ces resistances chauffantes pour fers à repasser. Il dépose entre autre, le 3 Janvier 1914 un brevet pour une résistance tubulaire comportant un fil chauffant droit, isolé par de la magnésie (brevet US1127374)

1918 Brevet Charles Abbott

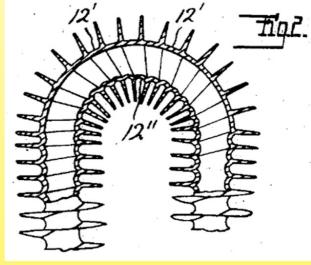
CORPS DE CHAUFFE

Les choufe-son rest équipée avet une corpu de choulle q CALROD », besvetée en Frence et à l'Estanger.

Le corpe de chardle e CALROED 3 est formé d'un il résistent bezellais, contre dons su tube raitellique dont il est écolé per un corpe spécial, conducteur de la chalcur razin excellent indust électrique. L'ensemble est tenté par une machine aphriale qui rédait le diamètre de tube et rend, de ce luit, l'indust aussi dur et compact qu'un blor de pierre maturelle.


Le c CALROD > est puniquement indestrucible.

Le c CALROD > rembe mer suiteaucen.


La technique de febrication du « CALROD » en fait un élément chauffant qui m pout être compani à succe autre système pour su referent al son rendement.

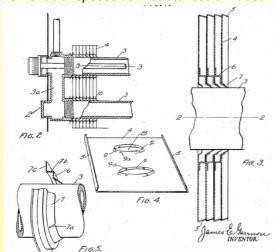
1932 Description des produits Calrod dans le catalogue Als-thom (document Ultimheat Museum)

Le 15 Novembre 1918, Charles Abbott, de Pittsfield, Massachusetts, ingénieur de la société General Electric USA, déposa le Brevet 1.367341, ou des résistances bobinées entourées de magnésie sont comprimées par retreint du tube. Ces résistances chauffantes seront connues sous la marque « Calrod », appelées en France « résistances blindées », et commercialisées par Thomson. (Als-Thom) vers 1930.

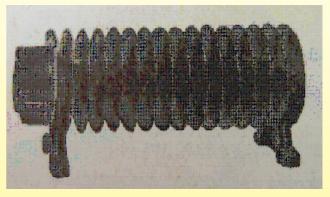
1920 Brevet Edwin Lightfoot

1930 Brevet de Charles Paugh

Le 22 Juin 1920, Edwin N. Ligthfoot, de la société Cutler Hammer, déposa le brevet US1359400, qui décrit les résistances blindées contemporaines, leurs possibilités de formage, les méthodes de laminage, et une machine de remplissage automatique, dont le principe est toujours utilisé..


Le 16 Décembre 1921, le Norvégien Christian Bergh Backer invente un système de production de la magnésie par oxydation du magnésium métallique par la vapeur sous pression. Dans cette méthode, que Backer appela plus tard le « Conversion process » ce n'est plus la compression du tube métallique qui comprime la magnésie, mais la magnésie est produite directement dans le tube. Cette oxydation produit de l'hydroxyde de magnésium dont le volume est double du métal d'origine, puis cet hydroxyde est converti par chauffage en oxyde de magnésium, qui est à la fois un isolant électrique et un conducteur thermique. (Brevet norvégien 37862, Brevet US 1.451.755 accordé le 17/04/1923, mise à jour 16340). Malgré des pertes d'isolement électrique dues à la conversion de l'hydroxyde en oxyde dans ce système (qui furent compensées par des modifications ultérieures du procédé en 1936), ces deux systèmes de production, Calrod et Backer resteront en concurrence pendant des décennies, mais le procédé Calrod est désormais le seul à subsister, sa simplicité de fabrication l'ayant imposé.

Ces deux systèmes permettront de réaliser des éléments chauffants blindés avec de fortes densités de puissance, qui ne seront limités que par la température maximale possible du fil chauffant interne, et de la capacité du tube à échanger sa chaleur avec le milieu extérieur.


Dans le cas du réchauffage des liquides, c'est le liquide lui-même, qui donnera les limites, fonctions de sa capacité calorifique, de sa conductibilité thermique et de sa vitesse de circulation. Dans le cas de l'air, il devint rapidement évident que la surface d'échange du tube devait être augmentée pour pouvoir profiter des fortes densités de puissance réalisables. Dès lors deux voies furent explorées: des ailettes hélicoïdales sur des tubes qui seront formés ensuite, ou

des ailettes serties rapportées sur des tubes formés en épingles.

Le 16 Juin 1930, Charles Paugh de la Wolverine Tube Company, déposa un brevet (Brevet US1909005A) pour une méthode de réalisation d'ailettes rapportées sur des tubes métalliques, permettant le cintrage ultérieur des tubes. Ces ailettes hélicoïdales furent utilisées rapidement pour les radiateurs de chauffage central, et leur technique de fabrication fut facilement transposée aux résistances blindées.

1927 Brevet de James Gannon

1932 Radiateur utilisant des résistances à ailettes Als-thom enroulée en spirale (Document Ultimheat Museum)

Les évolutions techniques depuis les années 1930 ont été principalement axées sur l'amélioration de la qualité des poudres de magnésie, des fils résistifs, et dans l'apparition des tubes métalliques à forte tenue à la chaleur et à la corrosion (Entre autres, les aciers inoxydables 304, 321, 316 et Incolloy 800, 840, 825).

L'arrivée des alliages Fer Chrome Aluminium en 1931, inventés par Hans Von Kantsow en Suède (qui créa la société Kanthal, acronyme formé de son nom et d'Aluminium), permit de réaliser des fils chauffants ayant une tenue en température encore plus élevée que le Nickel Chrome et résistant bien à la corrosion. Ces fils sont maintenant un standard des résistances à haute température.

1939 Calrod heating elements made of Stainless Steel (Ultimheat Museum document)

Apres une période d'interdiction d'utiliser l'électricité pour le chauffage, imposée en 1941, virent le jour en France a partir de 1945, plusieurs constructeurs d elements blindes tels que Métanic, Rubanox, Spirox.

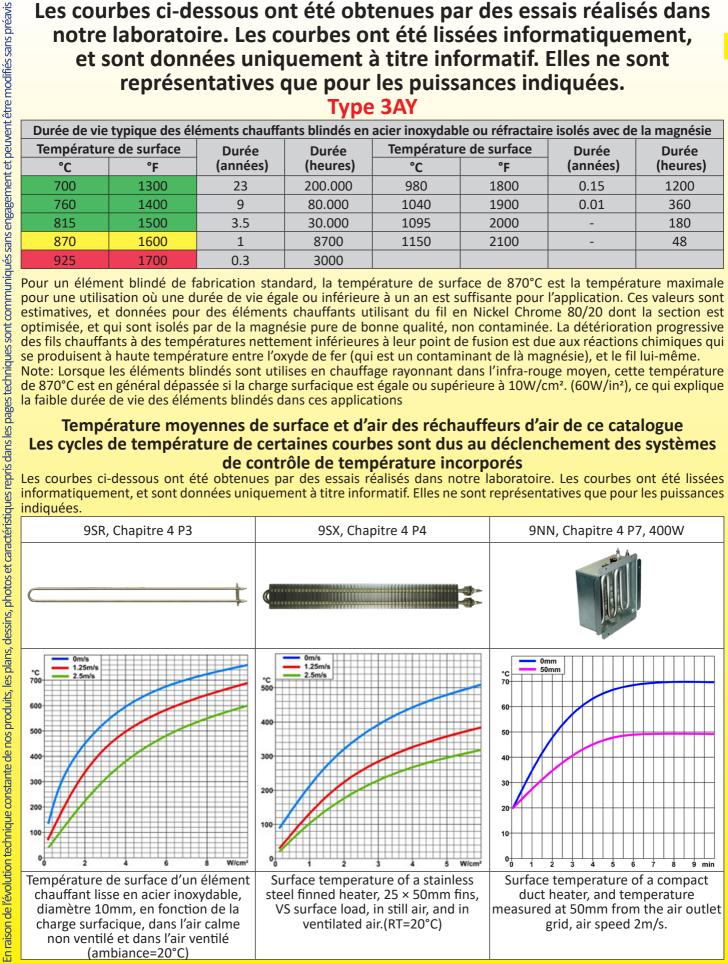
La technologie et les recherches portèrent alors sur l'étanchéité des extrémités des tubes, car les propriétés hydrophiles de la magnésie lui font lentement perdre ses propriétés isolantes. Le développement des résines silicone (1945-1950) puis des résines époxydes (1955-57) ont grandement amélioré ce point critique.

Depuis cette période, il y eut peu d'évolution dans le concept de fabrication des éléments blindés, et les améliorations apparurent principalement dans la qualité des matières premières utilisées, et des nouveaux alliages réfractaires et inoxydables utilisés pour les tubes métalliques et les fils chauffants.

L'évolution et la démocratisation des appareils permettant de réaliser des éléments frittés en carbure de silicium, ainsi que les tubes et barres en quartz ont permis de réaliser des éléments radiants dans l'infrarouge avec un rendement très élevé.

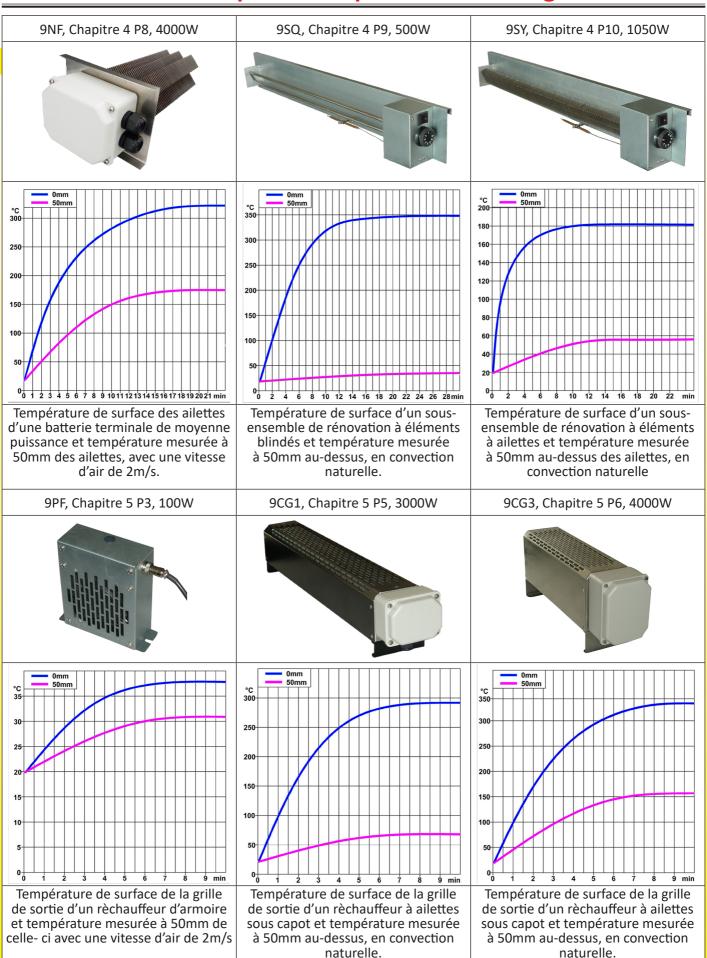
Tableaux techniques utiles pour le réchauffage de l'air

Les courbes ci-dessous ont été obtenues par des essais réalisés dans notre laboratoire. Les courbes ont été lissées informatiquement, et sont données uniquement à titre informatif. Elles ne sont représentatives que pour les puissances indiquées.

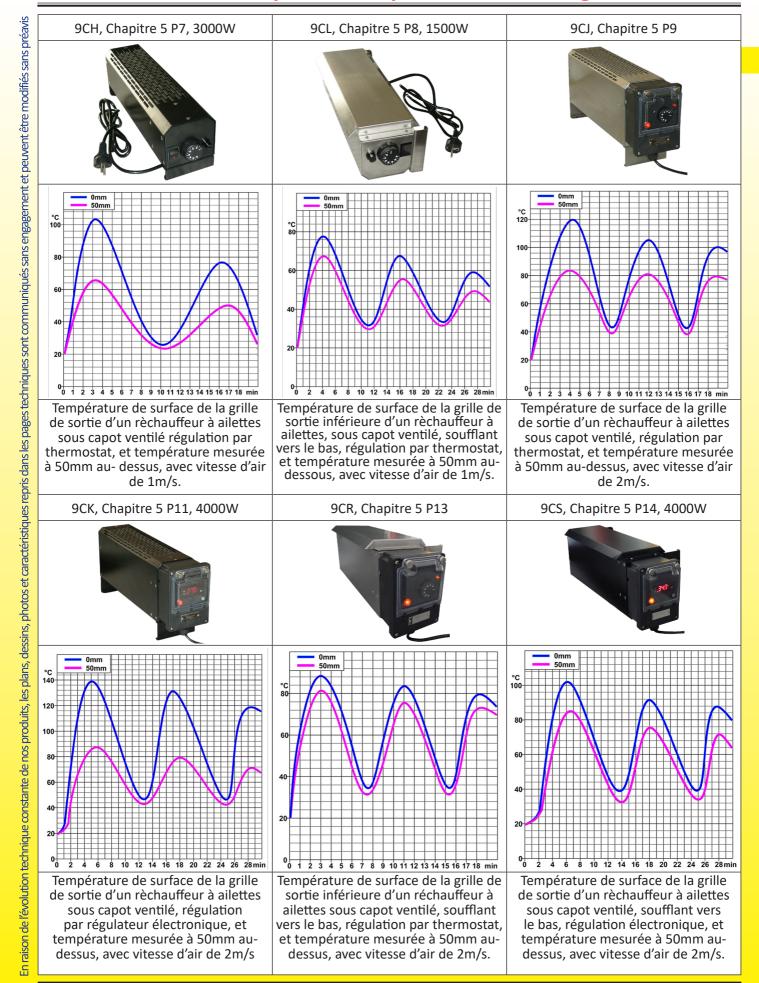

Type 3AY

Durée de vie typique des éléments chauffants blindés en acier inoxydable ou réfractaire isolés avec de la magnésie								
Température de surface		Durée	Durée	Température de surface		Durée	Durée	
°C	°F	(années)	(heures)	°C	°F	(années)	(heures)	
700	1300	23	200.000	980	1800	0.15	1200	
760	1400	9	80.000	1040	1900	0.01	360	
815	1500	3.5	30.000	1095	2000	-	180	
870	1600	1	8700	1150	2100	-	48	
925	1700	0.3	3000					

Pour un élément blindé de fabrication standard, la température de surface de 870°C est la température maximale pour une utilisation où une durée de vie égale ou inférieure à un an est suffisante pour l'application. Ces valeurs sont estimatives, et données pour des éléments chauffants utilisant du fil en Nickel Chrome 80/20 dont la section est optimisée, et qui sont isolés par de la magnésie pure de bonne qualité, non contaminée. La détérioration progressive des fils chauffants à des températures nettement inférieures à leur point de fusion est due aux réactions chimiques qui se produisent à haute température entre l'oxyde de fer (qui est un contaminant de là magnésie), et le fil lui-même. Note: Lorsque les éléments blindés sont utilises en chauffage rayonnant dans l'infra-rouge moyen, cette température de 870°C est en général dépassée si la charge surfacique est égale ou supérieure à 10W/cm². (60W/in²), ce qui explique la faible durée de vie des éléments blindés dans ces applications

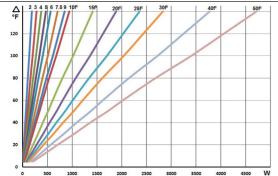

Température moyennes de surface et d'air des réchauffeurs d'air de ce catalogue Les cycles de température de certaines courbes sont dus au déclenchement des systèmes de contrôle de température incorporés

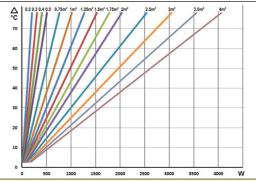
Les courbes ci-dessous ont été obtenues par des essais réalisés dans notre laboratoire. Les courbes ont été lissées informatiquement, et sont données uniquement à titre informatif. Elles ne sont représentatives que pour les puissances indiquées.


Cat24-2-2-11 Nous contacter www.ultimheat.com

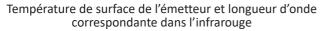
Tableaux techniques utiles pour le réchauffage de l'air

Tableaux techniques utiles pour le réchauffage de l'air

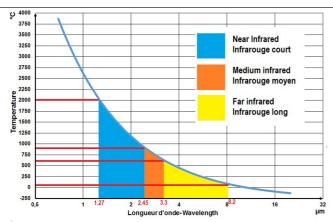

Nous contacter www.ultimheat.com Cat24-2-2-13


0

Puissance indicative nécessaire pour les réchauffeurs d'armoire (Armoires métalliques non isolées)


Puissance en fonction de la surface extérieure (ft²) de l'armoire et de l'écart de température intérieur/extérieur souhaité. Armoires plastique: diviser la puissance par 2. Utilisation en extérieur en plein vent: ajouter 50%.

Puissance en fonction de la surface extérieure (m²) de l'armoire et de l'écart de température intérieur/extérieur souhaité. Armoires plastique: diviser la puissance par 2, Utilisation en extérieur en plein vent: ajouter 50%.





Longueurs d'onde du rayonnement infrarouge

Temps de réponse de différents émetteurs d'infrarouge long (température de stabilisation 440°C) comparés à un émetteur dans l'infrarouge moyen (température de stabilisation 700°C)

Il existe plusieurs définitions de l'infrarouge et de sa division en long, moyen et court, et souvent la confusion est faite entre ces différentes définitions.

- <u>La première</u> est celle de l'astronomie, selon la norme ISO 20473 qui définit le rayonnement infrarouge depuis le bord rouge du spectre visible à 0.780 micromètres (μm) jusqu'à 1000 μm.
- <u>- La seconde</u> est celle de la CIE qui recommande dans le domaine de la photobiologie et de la photochimie le découpage du domaine infra-rouge en trois zones: IR-A: de 0.7pm à 1.4pm; IR-B: de 1.4pm à 3pm; IR-C: de 3pm à 1000μm.
- <u>- La troisième</u>, utilisée dans le domaine du chauffage infrarouge, définit les longueurs d'ondes comme suit:
- Infrarouge long de 370 à 600°C, correspondant à une longueur d'onde de 4.5 à 3.30pm.

Il existe cependant des émetteurs infrarouges dits « à basse température » destinés au chauffage de locaux (plafonds chauffants, murs chauffants pour saunas, convecteurs dits « radiants »), qui fonctionnent à des températures de surface plus basses de l'ordre de 70 à 80°C c'est-à-dire dans les longueurs d'ondes de 8.2 à 7.8 pm.

- Infrarouge moyen, de 600 à 900°C correspondant à une longueur d'onde de 3.3 à 2.45pm
- Infrarouge court, de 900 à 2000°C, correspondant à une longueur d'onde de 2.45 à 1.27μm.

Emetteurs d'infrarouge long.

- Emetteurs céramique constitués d'un fil chauffant encapsulé dans de la céramique. La température de surface de ces céramiques peut aller de 350°C à 650°C. En raison de leur conception et de la faible conductibilité thermique de la céramique utilisée, des écarts de température jusqu'à 200°C sur la surface émissive, entre creux bosses, centre et bords sont possibles. Il en résulte un rayonnement infra-rouge répartie sur en grande gamme de longueur d'ondes. En outre, un fort pourcentage du rayonnement, émis sur la face arrière de ces émetteurs, ne sert qu'à chauffer leur support. Les céramiques utilisées ayant un faible pouvoir émissif dans l'infrarouge long, une partie supplémentaire de l'énergie est dissipée dans des longueurs d'ondes différentes. Afin d'améliorer leur émissivité, certain de ces appareils utilisent maintenant des céramiques recouvertes d'un émail noir. Le temps pour atteindre 90% de leur température de régime, mesuré depuis 25°C est de l'ordre de 5 minutes 40 s.)
- Emetteurs à tube en carbure de silicium fritté: ils atteignent une émissivité proche de 100% dans la zone de 3 à 4 microns, c'est-à-dire pour des températures de surface de 450 à 690°C (840 à 1280°F) Le temps pour atteindre 90% de la température de régime, mesuré depuis 25°C est de l'ordre de 3 minutes 30s.

les plans, dessins, photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis l'évolution technique constante de nos produits,

Tableaux techniques utiles pour le réchauffage de l'air

<u>- Eléments blindés tubulaires:</u> habituellement constitués d'un tube en inconel ayant reçu un traitement de surface d'oxydation pour lui donner une meilleure émissivité en infrarouge. La surface de la résistance en fonctionnement donne un rayonnement visible rouge sombre. La température de surface de ces éléments peutaller de 450 à 600°C. Le temps pour atteindre 90% de la température de régime, mesuré depuis 25°C est de l'ordre de 5 minutes 30s sur un tube chauffant de 10mm de diamètre, équivalent à peu de chose près à un émetteur radiant céramique.

Emetteurs d'infrarouge moyen

Ils existent sous deux formes principales:

<u>- Eléments sous tube quartz</u>, bobinés en nickel chrome, en carbone, en Fer-Nickel-Chrome ou en tungstène. Ces tubes sont dépolis, ouverts et en contact avec l'air atmosphérique. Ces éléments ont une température de surface de 700°C à 1000°C; Ils sont particulièrement économiques, mais fragiles, avec une durée de vie limitée de l'ordre de 5,000 heures car le fil chauffant atteint des températures élevées dans l'air et s'y oxyde rapidement.

Le temps pour atteindre 90% de la température de régime, mesuré depuis 25°C est de l'ordre de 1 minute 20 s

<u>- Eléments blindés tubulaires</u>, similaires à ceux utilisés dans l'infrarouge long. La forte charge surfacique donne un rayonnement visible de couleur rouge clair. La température de surface de ces éléments est de l'ordre de 700°C à 800°C. Le temps pour atteindre 90% de la température de régime, mesuré depuis 25°C est de l'ordre de 2 minutes 40s)

Emetteur d'infrarouge court

Cette source de rayonnement est constituée d'un filament incandescent de tungstène ou de Fer-Chrome-Aluminium dans un tube en quartz rempli d'azote ou d'argon et éventuellement, selon les modèles, un petit pourcentage de gaz halogène. Ce filament est porté à une température moyenne de 1800°C. (Certains jusqu'à 2500°C). Développés à l'origine pour des applications en éclairage, ils émettent partiellement dans l'infrarouge long car une partie des longueurs d'ondes émises dans le spectre visible et dans l'infrarouge court est absorbée par le quartz et converti en infrarouge long par la liaison chimique silice-oxygène.

Leur inertie est très faible (quelques secondes). Ces tubes doivent être ventilés.

Différents types d'émetteurs infrarouges

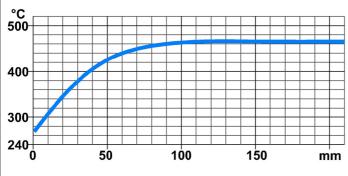
Les matériaux sont sélectifs quant à la longueur d'onde qu'ils absorbent dans l'infrarouge. La plupart des matériaux montrent un pic d'absorption entre 3 et 4 microns (pm).

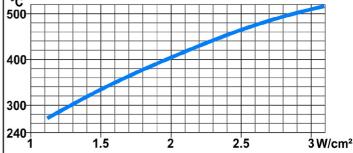
La longueur d'onde produite par la source de chaleur est fonction de la température de là source. Il est donc possible d'ajuster la température de la source et donc la longueur d'onde pour qu'elle corresponde au pic d'absorption de la matière à réchauffer.

La formule donnant la température de surface en fonction de la longueur d'onde (p) est la suivante:

 $^{\circ}$ C = $(2897/\mu)$ -273 ou $^{\circ}$ F = $(5215/\mu)$ -459

Par exemple, si le produit à réchauffer a un pic d'absorption à 3.5p, la température de surface de l'élément chauffant doit être: (2897/3.5)-373 = 555°C, ou (5215/3.5)-459 = 1031°F.


Cette règle s'applique quelle que soit la construction de la source de chaleur.


Ainsi, les ampoules à filament ayant une température très élevée, elles rayonneront dans le proche infrarouge, des éléments blindés en Incolloy dont les températures sont de 600 à 700°C vont rayonner dans l'infrarouge moyen, et des émetteurs en céramique avec une température de surface de 400 à 500°C vont rayonner dans l'infrarouge long.

Ce qui va faire la différence dans le rendement final est le pourcentage d'énergie fournie à la source de chauffage qui sera convertie dans la longueur d'onde requise.

Cela signifie également qu'il est possible de régler la longueur d'onde de pic d'une source de rayonnement en contrôlant sa température de surface, par exemple par réglage de la tension ou la commande de la puissance, et surtout en utilisant pour l'élément chauffant des matériaux ayant la plus grande émissivité dans la longueur d'onde voulue. Les tubes en carbure de silicium frittés atteignent une émissivité proche de 100% (similaire à un corps noir) dans la zone de 3 à 4 microns, c'est-à-dire pour des températures de surface de 450 à 690°C (840 à 1280°F).

Comportement thermique des radiants infrarouges en carbure de silicium

Température de surface d'un radiant infrarouge en carbure de silicium en fonction de la charge surfacique, mesuré au centre.

Variation de la température de surface d'un radiant infrarouge en carbure de silicium en fonction de la distance des extrémités. Les extrémités étant plus froides que le centre, rayonnent dans l'infrarouge plus long.

les plans, dessins, En raison de l'évolution technique constante de nos produits,

0

Emissivité de quelques matériaux

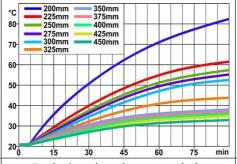
Francisci vitá	En	nissivité	Funicais sitá	Emissivité		
Emissivité	Surface polie	Surface oxydée noir	Emissivité	Surface polie	Surface oxydée noir	
Aluminium	0.09	0.22	Incoloy 800	0.20	0.92	
Laiton	0.04	0.60	Inconel 600	0.20	0.92	
Cuivre	0.04	0.65	Carbure de silicium fritté	N.A	0.93	
Inox 304, 316, 321	0.17	0.85	Corps noir	N.A	1.00	

De ce tableau il est possible de conclure que les meilleurs réflecteurs pour le rayonnement sont les surfaces polies en aluminium, laiton ou cuivre, et que les meilleurs matières des tubes chauffants utilisés pour produire ce rayonnement sont le carbure de silicium fritté, l'incolloy 800 ou l'inconel 600 oxydés noir.

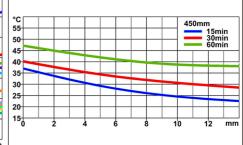
Pic d'absorption de quelques matériaux (μm)

Les pics d'absorption sont les longueurs d'ondes qui sont le plus converties en énergie dans le matériau et provoquent son échauffement.

Pics d'absorption des	Matière						
rayonnements infrarouges	Eau	Aluminium	Lin, cotton	Béton	Soie	Plâtre	Porcelaine
Pic principal (μ)	3	3	3	3	3	3	5
Pic secondaire (μ)	6	8.5	6.5	6.5	5	6	8
	Verre, Cristal	Polyethylène	Plexiglass	PVC	Polystyrène	Oxyde de magnésium	Caoutchouc
Pic principal (μ)	8	3.5	6	3.5	3.5	3.5	3.5
Pic secondaire (μ)	N/A	7	9	7	7	6	8


Température des produits alimentaires soumis à un rayonnement infrarouge.

Lorsqu'un rayonnement pénètre la matière, il interagit avec elle et lui transfère de l'énergie.. Les essais ci-dessous permettent de caractériser clairement les effets du rayonnement infrarouge émis par les émetteurs en carbure de silicium.


Essais effectués en soumettant àun rayonnement infrarouge un échantillon de matière synthétique de 30mmd'épaisseur (Gel de méthyl-cellulose) ayant un comportement aux infrarougesproche des aliments, une composition en eau similaire, Les essais sonteffectués en mesurant son élévation de température à 10mm de profondeur lorsquel'échantillon est chauffé depuis différentes distances. Essais effectués avecdes émetteurs en carbure de silicium de type 9MH repris en p19 de ce catalogue. La distance est mesurée depuis le bord du réflecteur jusqu'à la surface duspécimen en gel de méthyl-cellulose. La températures de départ des échantillonsest de 20°C

Répartition de la chaleur en largeur selon la distance par rapport au centre, après différentes durée de chauffe. Distance entre l'émetteur et l'échantillon: 450mm

Evolution dans le temps de la température moyenne mesurée au centre pour différentes distances entre l'échantillon et l'émetteur

Pénétration de la chaleur en fonction de la profondeur de l'échantillon, pour différents temps de chauffage. Distance entre l'émetteur et l'échantillon: 450mm

En raison de l'évolution technique constante de nos produits, les plans, dessins, photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

Section 3 Liste des références

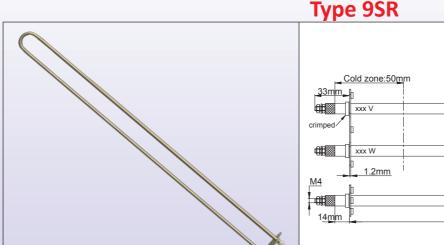
Nous contacter

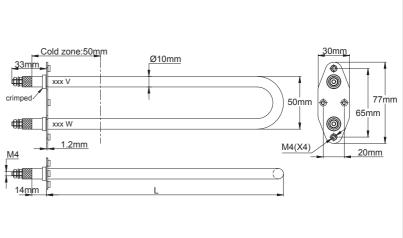
www.ultimheat.com

Liste des références

Ŀ	
éal	Liste des références
spr	3AER101TF230V
san	3AER102TF024V
<u>iés</u>	3AER102TF048V
g	3AER104TF400V
Ĕ	3AER105TF110V
être	3ASN30100110
sut	3ASN30100120
Š	3ASN30700110
t pe	3ASN30700110
nte	
me	3AYM30100125
age	3AYN30100125
eng	3AYN30100140
INS (3AYN30100160
S Sa	3AYN30700125
dué	3AYN30700140
uni	3AYN30700160
m	9CAR7S12023060EB
8	9CAR7S12023060EH
ont	9CAR7S22023120EB
es se	9CAR7S22023120EH
idue	9CAV7S12023060EB
hh	9CAV7S12023060EH
s te	9CAV7S22023120EB
3ge	9CAV7S22023120EH
Sp	9CBS7T32023175H4
et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préav	9CBS7T32023175HB
dar	9CBS7T62023350H4
oris	
S ref	9CBS7T62023350HB
and	9CBT7T62040350H4
istic	9CBT7T62040350HB
ctér	9CBX7T32023175H4
aga	9CBX7T32023175HB
etc	9CBX7T62023350H4
tos	9CBX7T62023350HB
oho	9CBX7T62040350H4
ns, I	9CBX7T62040350HB
SSSil	9CG13N23023150E4
s, de	9CG13N23023150EB
lan	9CG13N24523225E4
esp	9CG13N24523225EB
ts, l	9CG16N23023300E4
dui	9CG16N23023300EB
pro	9CG16N24523450E4
nos	9CG16N24523450EB
de	9CG34G33023200E4
nte	9CG34G33023200EB
sta	9CG34G34523230E4
8	
ank	9CG34G34523230EB
hnic	9CG34G63023400E4
tec	9CG34G63023400EB
ion	9CG34G64523460E4
olut	9CG34G64523460EB
ľév.	9CH14033023150H4
de	9CH14033023150HB
Son	9CH17033023300H4
in raison de l'évolution technique constante de nos produits, les plans, dessins, photos	9CH17033023300HB
-	

Lista des références
Liste des références
9CJ34Y33023200H4
9CJ34Y33023200HB
9CJ34Y63023300H4
9CJ34Y63023300HB
9CJ34Y6304330004
9CJ34Y630433000B
9CJ3DY23023260HB
9CJ3DY32023130H4
9CJ3DY32023130HB
9CJ3DY62023260H4
9CJ3DY6204326004
9CJ3DY620432600B
9CK34Y33023200H4
9CK34Y33023200HB
9CK34Y63023300H4
9CK34Y63023300HB
9CK34Y6304330004
9CK34Y630433000B
9CK3DY23023260HB
9CK3DY32023130H4
9CK3DY32023130HB
9CK3DY62023260H4
9CK3DY6204326004
9CK3DY620432600B
9CL14033023150H4
9CL14033023150HB
9CL17033023300H4
9CL17033023300HB
9CR34Y33023200H4
9CR34Y33023200HB
9CR34Y63023300H4
9CR34Y63023300HB
9CR34Y6304330004
9CR34Y630433000B
9CS34Y33023200H4
9CS34Y33023200HB
9CS34Y63023300H4
9CS34Y63023300HB
9CS34Y6304330004
9CS34Y6304330004 9CS34Y630433000B
9MHP290H23052SF1
9MHP290H23052SR1
9MHP290H23052SS1
9MHP590H23110LF1
9MHP590H23110LR1
9MHP590H23110LS1
9MNP200E232255A0
9MNP200H232375D0
9MNP280H235255D0
9MNP300E232340A0
9MNP400E232450A0
9MNP400H237505D0
9MNP500H239505D0
9MNP580H23A105D0
9MNP800H23A505D0
9MNPA00H23A905D0


Liste des références
9MNPA20H23B255D0
9NFL170C230753NC
9NFL170C231506NC
9NFL320C231503NC
9NFL320C233006NC
9NFL420C232103NC
9NFL420C234206NC
9NNL128423400BJ0
9NNL128G23400BJ0
9NNL188423600BJ0
9NNL188423600BJC
9NNL188G23600BJ0
9NNL188G23600BJC
9NNL368423A20BJ0
9NNL368G23A20BJ0
9PF1058L423005EC
9PF1058L523020EC
9PF1058LG23005EC
9PF1058LH23020EC
9PF1108L423010EC
9PF1108L523040EC
9PF1108LG23010EC
9PF1108LH23040EC
9PF2058L423005EC
9PF2058L523020EC
9PF2058LG23005EC
9PF2058LH23020EC
9PF2108L423010EC
9PF2108L523040EC
9PF2108LG23010EC
9PF2108LH23040EC
9PF3058L423005EC
9PF3058L523020EC
9PF3058LG23005EC
9PF3058LH23020EC
9PF3108L423010EC
9PF3108L523040EC
9PF3108LG23010EC
9PF3108LH23040EC
9SQL12GA123050EC
9SQL12GA223100EC
9SQL24GA123100EC
9SQL24GA223200EC
9SRC250A2316050A
9SRC250A2340050A
9SRC400A2327550A
9SRC400A2367550A
9SRC500A2335050A
9SRC500A2387550A
9SRC600A2342550A
9SRC600A23A0550A
9SRC700A2350050A
9SRC700A23A2550A
9SRC800A2357550A
9SRC800A23A1550A
9SRC900A2360050A


Liste des références
9SRC900A23A1650A
9SXC175A232103C3
9SXC175A233103C3
9SXC300A234003C3
9SXC300A236003C3
9SXC415A233503C3
9SXC415A238503C3
9SXC500A237003C3
9SXC500A23A053C3
9SXC750A23A073C3
9SXC750A23A603C3
9SXCA00A23A503C3
9SXCA00A23B203C3
9SYL12GA223170EC
9SYL24GA123085EC
9SYL24GA223250EC
9SYL36GA123125EC
Q7C030100I001R00
Y02NAC000060114P
Y02NAC005035114L
Y02NAC005035114P
Y02NAC020080114L
Y02NAC020080114P
Y02NAC-10050114L
Y02NAC-10050114L
Y02NAC-10050114P
Y036GA004040QB3J
Y036GA004040QB3K
Y038GA004040AA3K
Y038GA004040AO6J
Y038GA004040AO6K
Y038GA004040QO3J
Y22D9J00806USUSA
Y22D9K01006USUSA
Y22D9K02006USUSA
Y22D9K03006USUSA
Y22D9K07006USUSA
Y22D9L01006USUSA
Y23D7J03308C1C10
Y23D7J04010C1C10
Y23D7J05010C1C10
Y23D7J05510C1C10
Y23D7J06010C1C10
Y23D7J07010C1C10
Y23D7Q04511C1C10

Mise à jour 2025/02/25

Résistances blindées nues avec bride,

tube diamètre 10mm, pour chauffage par convection naturelle ou forcée

Description

Ces épingles chauffantes, destinées aux intégrateurs professionnels, sont serties sur une bride légère en acier inoxydable, et sont facile à intégrer en traversée de paroi métallique. Elles possèdent une résistance d'isolement et une résistance à la reprise d'humidité exceptionnelles. Elles sont destinées au réchauffage d'air par convection naturelle ou forcée

Caractéristiques techniques

Matière des épingles: élément blindé diamètre 10mm en inox 304L. En option: inox 201, 316, 321, Incolloy 800.

Raccordement: bornes à vis inox M4, avec écrous M4 et rondelle inox, sortie par perle céramique.

Résistance d'isolement: >3 Gohms (neuves) >1 Gohms (après essai climatique suivant):

1000 heures à 100°C, suivi de 1000 heures à 60°C et 95% d'humidité relative, suivi de 90 cycles d'une heure de -20°C à +70°C, suivi de 240 heures à -30°C

Tension de claquage: >1800 volts, 0.2mA, (testé à 100% en fabrication) et après essais climatiques effectués par prélèvements.

Bride: sertie, en acier inoxydable 304 épaisseur 102mm, avec 4 trous taraudés M4, distance 65mm et distance 20mm.

Charge surfacique:

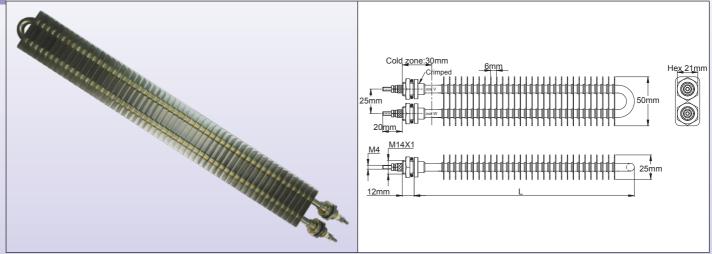
Pour une utilisation sûre, nous recommandons une charge surfacique maximale de 1.2W/cm² (7.8W/in²) pour les applications en convection naturelle (température de surface de la résistance- 300°C), et de 3W/cm² (19.5W/in²), pour les applications en convection forcée (température de surface de la résistance ~ 300°C pour une vitesse d'air ~2.5m/s). Voir en dernière partie de ce catalogue les températures de surface et d'air atteintes en fonctionnement ventilé et non ventilé.

Tension d'alimentation: 230V. Autres valeurs sur demande

Tolérances sur la puissance: +5/-10%

Options: Charges surfaciques ou longueurs spécifiques, boitier de raccordement métal ou plastique, boitier instrumenté, brides spéciales avec une ou plusieurs épingles.

Références principales


1.2\	N/cm² (7.8W/in²)		3W/cm² (19.5W/in²)			
Références	es Longueur L (mm) Puissance (W)		Références Longueur L (mm)		Puissance (W)	
9SRC250A2316050A	250	160	9SRC250A2340050A	250	400	
9SRC400A2327550A	400	275	9SRC400A2367550A	400	675	
9SRC500A2335050A	500	350	9SRC500A2387550A	500	875	
9SRC600A2342550A	600	425	9SRC600A23A0550A	600	1050	
9SRC700A2350050A	700	500	9SRC700A23A2550A	700	1250	
9SRC800A2357550A	800	575	9SRC800A23A1550A	800	1500	
9SRC900A2360050A	900	650	9SRC900A23A1650A	900	1650	

Nous contacter www.ultimheat.com Cat24-2-4-3

Résistances à ailettes à incorporer, avec raccord fileté M14, charge 3W/cm² et 4.5W/cm², pour chauffage par convection naturelle ou force

Type 9SX

Description

Ces épingles chauffantes à ailettes, destinées aux intégrateurs professionnels, sont serties sur une bride légère en acier inoxydable, et sont facile à intégrer en traversée de paroi métallique. Elles possèdent une résistance d'isolement et une résistance à la reprise d'humidité exceptionnelles. Elles sont destinées au réchauffage d'air par convection naturelle ou forcée

Caractéristiques Techniques

Matière des épingles: élément blindé diamètre 8mm en inox 304L. En option: inox 316, 321, Incolloy 800.

Taille des ailettes: 25 × 50mm, entre axe de l'épingle 25mm

Matière des ailettes: Inox 304. (Des ailettes en acier zingué sont réalisables sur demande, avec minimum de commande à respecter)

Raccordement: bornes à vis inox M4, avec écrous M4 et rondelle inox, sortie par perle céramique

Raccords: sertis, M14 × 1mm en inox 304, avec écrous laiton nickelé, et joints fibre. (Version étanche avec raccord soudé TlG, ou version économique avec raccord acier nickelé possibles sur demande, avec minimum de commande à respecter)

Résistance d'isolement: >3 Gohms (neuves) >1 Gohms (après essai climatique suivant):

1000 heures à 100°C, suivi de 1000 heures à 60°C et 95% d'humidité relative, suivi de 90 cycles d'une heure de -20°C à +70°C, suivi de 240 heures à -30°C

Tension de claquage: >1800 volts, 0.2mA, (testé à 100% en fabrication) et après essais climatiques effectués par prélèvements.

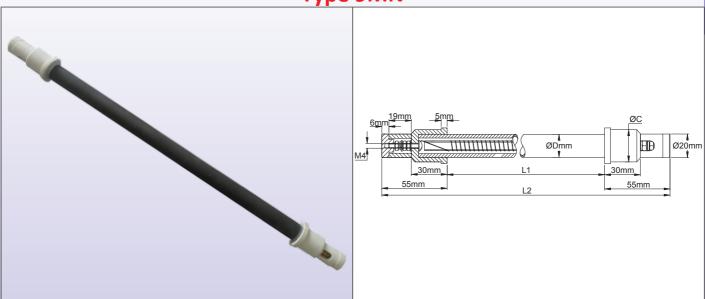
Charge surfacique:

Pour une utilisation sûre, nous recommandons une charge surfacique maximale de 3W/cm² (19.5W/in²) pour les applications en convection naturelle (température de surface de la résistance ~300°C), et de 4.5W/cm² (30W/in²), pour les applications en convection forcée (température de surface de la résistance ~300°C pour une vitesse d'air ~2.5m/s). Voir en dernière partie de ce catalogue les températures de surface et d'air atteintes en fonctionnement ventilé et non

Tension d'alimentation: 230V. Autres valeurs sur demande

Tolérances sur la puissance: +5/-10%

Options:


Autres longueurs, boitier de raccordement métal ou plastique, boitier instrumenté, pattes de fixation murales, ailettes acier zingué ou nickelé ou lnox 201.

Références principales

3W	/cm² (19.5W/in²)		4.5W/cm ² (30W/in ²)							
Références Longueur L (mm) Puissance (W)		Références	Longueur L (mm)	Puissance (W)						
9SXC175A232103C3	175	210	9SXC175A233103C3	175	310					
9SXC300A234003C3	300	400	9SXC300A236003C3	300	600					
9SXC415A233503C3	415	550	9SXC415A238503C3	415	850					
9SXC500A237003C3	500	700	9SXC500A23A053C3	500	1050					
9SXC750A23A073C3	750	1070	9SXC750A23A603C3	750	1600					
9SXCA00A23A503C3	1000	1500	9SXCA00A23B203C3	1000	2200					

Cat24-2-4-4 Nous contacter www.ultimheat.com

Eléments radiants infra-rouge dernière génération, pour incorporation Type 9MN

Caractéristiques principales

Destinés à des intégrateurs, ces tubes rayonnent dans l'infrarouge entre 3 et 6µ. Ils se caractérisent par une émissivité proche de 100% dans cette zone, une température de surface peu élevée, une forte résistance mécanique et une forte résistance à la corrosion.

Ils sont particulièrement adaptés au chauffage, séchage, ou polymérisation d'une grande partie des matériaux usuels, ou ils permettent une économie importante par rapports aux moyens traditionnels de chauffage par convection. Il est recommandé de les installer sur un support réflecteur.

Applications

- Séchage à basse température du cuir, bois, impressions et teintures, peintures, email céramique, aliments, poissons.
- Polymérisation de vernis sur métal dans l'automobile, l'électroménager et industries similaires
- Maintien en température de produits exposés, dans l'industrie de la restauration
- Réchauffage de matières plastiques pour formage
- Stérilisation d'appareils et équipements médicaux ou alimentaires
- Réchauffage ambiant extérieur
- Réchauffage de poste de travail en atelier
- Réchauffage de locaux d'élevage

Caractéristiques techniques

Tube radiant:

Matière: carbure de silicium fritté, épaisseur 3mm.

Résistance à la corrosion: supérieure au carbure de tungstène et à l'alumine, en particulier à haute température. Forte résistance mécanique à la flexion en 3 points: 550 MPa à la température ambiante (sur éprouvette de 3 × 4 × 45mm)

Importante conductibilité thermique à 200°C: >100W/mK. Cette conductibilité thermique très élevée garanti une excellente homogénéité de température sur toute la longueur du barreau, et donc un rayonnement infrarouge bien

- mesurée à froid entre extérieur du tube et partie sous tension: >100Gohm
- mesurée à 450°C entre supports céramique et parties sous tension: >20 Gohms

Diamètres extérieurs standard: 12mm et 20mm. 14 et 17mm sur demande (Minimumdemise en fabrication applicable) Puissance surfacique moyenne: 3W/cm². (Autres valeurs sur demande si la longueur d'onde doit être modifiée)

Temps de chauffe: inférieur à 5 minutes (Depuis la température ambiante jusqu'à la stabilisation)

Elément chauffant interne: fil en Nickel Chrome 80/20 bobiné sur âme quartz

Raccordement: sous capot céramique dévissable, par vis M4 en acier inoxydable

- Montage: les extrémités des tubes comportent une partie en céramique aluminée permettant la fixation par un collier.
- Tension: 230V en standard. Autre tensions sur demande (Minimum de mise en fabrication applicable)

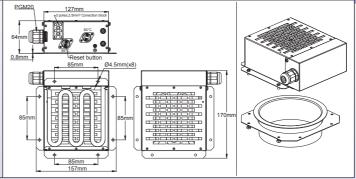
Options: modèles groupant plusieurs tubes côte à côte, sur le même plan. ou sur un plan cylindrique pour réaliser des

les plans, dessins, photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis Faible expansion thermique: 4.10⁻⁶mm/mmK concentré sur la longueur d'onde **Ensemble:** Tension de claquage: >2500V Température de surface: 400 à 450°C@25°C. panneaux rayonnants.

Références avec tubes diamètre extérieur D= 12mm, charge 3W/cm².

				/
Longueur hors tout (L2)	Longueur chauffante (L1)	Diamètre de montage (C)	Puissance (Watts)	Référence
310	200	19mm	225	9MNP200E232255A0
410	300	19mm	340	9MNP300E232340A0
510	400	19mm	450	9MNP400E232450A0

Références avec tubes diamètre extérieur D= 20mm, charge 3W/cm².


Longueur hors tout (L2)	Longueur chauffante (L1)	Diamètre de montage (C)	Puissance (Watts)	Référence
310	200	27mm	375	9MNP200H232375D0
400*	280*	27mm	525	9MNP280H235255D0
510	400	27mm	750	9MNP400H237505D0
610	500	27mm	950	9MNP500H239505D0
700*	580*	27mm	1100	9MNP580H23A105D0
910	800	27mm	1500	9MNP800H23A505D0
1110	1000	27mm	1900	9MNPA00H23A905D0
1310	1200	27mm	2250	9MNPA20H23B255D0

^{*} Pour utilisation dans les réflecteurs de la page 16

Petites batteries terminales carrées de conditionnement d'air, à incorporer, de 400 à 1200W

Type 9NN

APPLICATIONS TYPES

Batteries compactes de faible épaisseur, conçues pour le chauffage d'air dans des locaux industriels, à insérer dans des circuits de climatisation. Leur conception permet de les monter à l'extrémité du conduit de soufflage d'air de 125mm, sur des conduits existants. Une de leurs applications types est de permettre, sans travaux importants, de booster une installation de type pompes à chaleur air/air dont la puissance est insuffisante lors de conditions climatiques extrêmes. Elles sont destinées à des intégrateurs, pour utilisation dans des circuits fonctionnant en convection forcée.

Elles sont composée d'un élément blindé en acier inoxydable, monté sur une tôlerie en acier électro-zingué ou en acier inoxydable. Selon les modèles, le raccordement électrique se fait dans un boîtier métallique de raccordement, ou sans boitier, celui-ci devant alors être inclus dans la tôlerie de l'intégrateur.

Elles sont équipées de deux niveaux de sécurités thermiques.

CARACTERISTIQUES TECHNIQUES

Tôlerie: en acier galvanisé ou acier inoxydable 304

Thermostat de sécurité N°1: à réarmement automatique, coupe à 50°C, réenclenche à 40°C

Thermostat de sécurité N°2: à réarmement manuel, ouverture à 95°C.

Elément chauffant: élément blindé diamètre 8mm en inox 304L. (Autres caractéristiques, voir page 7)

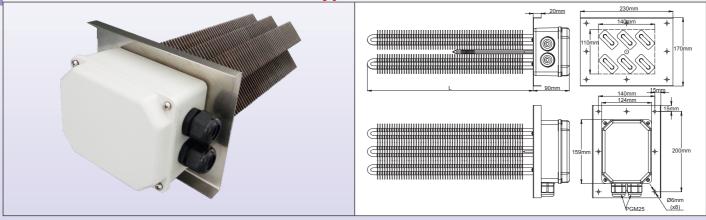
Puissance, charge des éléments chauffants et débit minimal*:

- Pour 400W, la charge est de 1.2W/cm², et la vitesse d'air minimale de 0.5m/s, correspondant à un débit égal ou supérieur à 28m³/h dans une gaine de dia. 125mm.
- Pour 600W, la charge est de 1.8W/cm², et la vitesse d'air minimale de 1.5m/s, correspondant à un débit égal ou supérieur à 84m³/h dans une gaine de dia. 125mm
- Pour 1200W, la charge est de 3.6W/cm², et la vitesse d'air minimale de 2.5m/s, correspondant à un débit égal ou supérieur à 140m³/h dans une gaine de dia. 125mm.
- * Valeurs indicatives. Ces valeurs ont été définies pour que la température de surface des éléments chauffants ne dépasse pas 300°C. Il appartient à l'intégrateur de procéder aux vérifications nécessaires des débits et températures atteintes dans l'application, afin que celles-ci soient conformes à la règlementation et aux normes de sécurité applicables.

 Tension: 220/240V, 50/60Hz (110-120V sur demande)

Capot de connexion (dans version avec capot): étanchéité IP40, avec entrée de câble par presse étoupe M20 en PA66 Raccordement: sur bornier céramique 3 × 2.5mm²

Montage: sur paroi plate, par 8 vis. Permet aussi le montage sur une manchette métallique de 125mm avec lèvre de 144 à 150mm (voir les accessoires ci -dessous)


Options: autres charges surfaciques, valeurs de déclenchement différentes des thermostats (minimum de commande applicable)

Références principales

Références avec structure en acier	Références avec	Puissance (W)	Capot de raccordement	Charge surfacique	Charge surfacique		Accessoire
électro-zingué	Structure en mox 304	(00)	raccordenient	(W/cm²)	(W/in²)	\ \^\	\ \ \
9NNL128G23400BJ0	9NNL128423400BJ0	400	No	1.2	7.7		
9NNL188G23600BJ0	9NNL188423600BJ0	600	No	1.8	11.6	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
9NNL368G23A20BJ0	9NNL368423A20BJ0	1200	No	3.6	23.2		
9NNL188G23600BJC	9NNL188423600BJC	400	Yes	1.2	7.7	Bride de raccordement et manche pour raccordement en extrémité conduit de 125mm. (acier galvanis	
9NNL368G23A20BJC	9NNL368423A20BJC	600	Yes	1.8	11.6		
9NNL188G23600BJC	9NNL188423600BJC	1200	Yes	3.6	23.2	Référence	9NNCT125

Batteries terminales de moyenne puissance, équipées d'éléments à ailettes en acier inoxydable, 3.5W/cm², pour vitesse d'air

Type 9NF

Applications principales

Ces batteries terminales de moyenne puissance sont principalement utilisées en gaine de climatisation, en amont des bouches de soufflage, pour assurer le chauffage de locaux industriels, en circuit fermé (air recyclé) ou circuit ouvert, avec une vitesse d'air mini de 2m/s.

Elles sont aussi utilisées pour le séchage, le traitement thermique, la déshydratation, la cuisson, dans les processus industriels.

Elles sont utilisables sur des gaines carrées ou rectangulaires et sont constituées de résistances à ailettes en acier inoxydable, montés sur un support en acier inoxydable. Leur montage dans les conduites existantes demande la réalisation d'une découpe de 140 × 110mm, et de 8 trous pour vis de 6mm. Le raccordement électrique se fait dans un boîtier en aluminium IP65. Ces appareils sont équipés d'un limiteur tripolaire à sécurité positive.

Caractéristiques techniques

Montage: Les tubes à ailettes sont orientés à 45° de l'axe de la platine de montage, ce qui permet de positionner la batterie en long ou en travers de la gaine, selon les encombrements disponibles.

Tailles minimum des conduits:

Pour éléments de 170mm: 200 × 170mm Pour éléments de 320mm: 350 × 170mm Pour éléments de 420mm: 450 × 170mm

Découpe nécessaire dans la tôlerie de la gaine: 140 × 110mm, et 8 trous pour vis de 6mm.

Sécurité thermique: Limiteur tripolaire à sécurité positive, à capillaire, incorporé, étalonné à 120°C (autre valeurs sur demande). Bulbe monté dans un doigt de gant étanche.

Raccordement: sous boîtier aluminium peinture époxy grise, IP65, de 160 × 124 × 92mm, équipé de deux presse étoupes M25 en polyamide.

Vitesse d'air minimale: >2m/s

Platine de montage: acier inoxydable 304 épaisseur 1.2mm, 150 × 235mm, avec ailettes de renfort, comportant 8 perçages pour vis de M6 (version non percée sur demande). Etanchéité IP65 entre les éléments chauffants à ailettes, l'extérieur du conduit et l'intérieur du boitier de raccordement

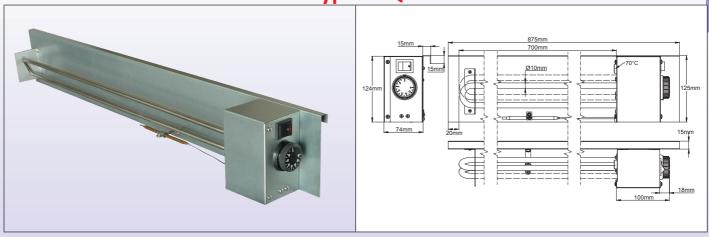
Eléments chauffants: 3 ou 6 éléments blindés à ailettes non démontables, charge surfacique 3.5W/cm², en acier inoxydable 304L, raccordement interne sur bornes à vis M4. La puissance de chaque éléments est de 250 watts en 170mm, 500W en 320mm et 700W en 420mm (Autres caractéristiques, voir section 4 P4)

Tension: 230V, 50/60Hz (110-120V sur demande) Câblage possible en monophasé 230V ou en triphasé 400V avec neutre.

Puissance, charge des éléments chauffants, débit d'air:

Voir pour information, dans la partie technique en fin de catalogue, les relevés de température effectués sur des modèles types. Il appartient cependant à l'intégrateur de procéder aux vérifications nécessaires des débits et températures atteintes dans l'application, afin que celles-ci soient conformes à la règlementation et aux normes de sécurité applicables.

Références principales


3 élémen	ts chauffants à ailettes		6 éléments chauffants à ailettes			
Référence	Puissance totale (W)	Longueur L	Référence	Puissance totale (W)	Longueur L	
9NFL170C230753NC	750	170	9NFL170C231506NC	1500	170	
9NFL320C231503NC	1500	320	9NFL320C233006NC	3000	320	
9NFL420C232103NC	2100	420	9NFL420C234206NC	4200	420	

Cat24-2-4-8 Nous contacter www.ultimheat.com

photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis En raison de l'évolution technique constante

Exemples de solutions techniques au réchauffage de l'air

Modèle à résistance blindée avec thermostat et limiteur. Type 9SQ

Applications principales

Ces sous-ensembles sont destinés à permettre des opérations de rénovation dans l'habitat ancien, en remplaçant les convecteurs d'ancienne génération, tout en conservant les emplacements et habillages existants. La fixation par un rail en U à l'arrière permet de les positionner facilement. L'utilisation d'un élément blinde garanti tune robustesse et une longévité exceptionnelle.

Ils sont équipés d'un thermostat de régulation individuel, réglable, permettant un contrôle de température local. Leur circuit de commande peut aussi être commandé par une régulation centralisée. Un thermostat de sécurité les protège contre la fermeture des orifices de circulation d'air.

Ils existent en version pour chauffage par convection naturelle et en version pour convection forcée par un système de ventilation.

Caractéristiques techniques

Encombrement: 875 × 124 × 74mm Matière de la tôlerie: acier électro-zingué

Eléments chauffants: un ou deux élément blindé en épingle, diamètre 10mm en inox 304L, longueur 700mm (En option:

inox 321).

Interrupteur marche arrêt: lumineux, bipolaire

Thermostat de sécurité: à disque, réarmement manuel, ouverture à 70°C, afin de protéger contre l'arrêt de la convection par suite de l'obstruction des entrées ou sorties d'air.

Thermostat de régulation: à bulbe et capillaire, plage de réglage 4-40°C

Raccordement: bornier céramique

Charge surfacique:

Pour une utilisation sûre, nous préconisons une charge surfacique maximale de 1.2W/cm² (7.8W/in²) pour les applications en convection naturelle, (température de surface de la résistance ~300°C), et de 2.4W/cm² (15.6W/in²), pour les applications en convection forcée (température de surface de la résistance ~250°C pour une vitesse d'air ~2.5m/s).

Voir en dernière partie de ce catalogue les températures de surface et d'air atteintes en fonctionnement ventilé et non ventilé.

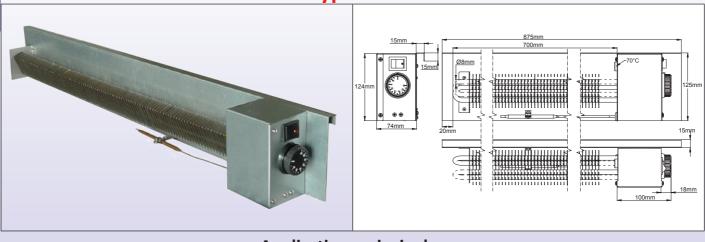
Tension d'alimentation: 230V. Autres valeurs sur demande

Tolérances sur la puissance: +5/-10%

Attention: les températures de surface des éléments chauffants sont élevées et peuvent occasionner des brûlures ou l'ignition de matériaux inflammables. L'intégrateur doit veiller à ce que dans son application, ces éléments chauffants ne puissent être touchés par l'utilisateur final, et ne puissent entrer en contact avec des matières combustibles. Il doit à cet effet respecter les contraintes d'installation données par les normes locales applicables.

Options:

Ce produit peut être fabriqué à la demande avec des longueurs différentes. (Quantité minimale de commande applicable)


Références principales

Une épingle chauffante				Deux épingles chauffantes			
Références	Puissance totale (W)	W/cm²	W/in²	n ² Références Puissance totale (W) W/cm			W/in²
9SQL12GA123050EC	500	1.2	7.8	9SQL12GA223100EC	1000	1.2	7.8
9SQL24GA123100EC	1000	2.4	15.6	9SQL24GA223200EC	2000	2.4	15.6

Cat24-2-4-9 Nous contacter www.ultimheat.com

Modèle à résistance blindée avec thermostat et limiteur Type 9SY

Applications principales

Ces sous-ensembles sont destinés à permettre des opérations de rénovation dans l'habitat ancien, en remplaçant les Convecteurs d'ancienne génération, tout en conservant les emplacements et habillages existants. La fixation par un rail en U à l'arrière permet de les positionner facilement. L'utilisation d'un élément blinde garanti tune robustesse et une longévité exceptionnelle.

Ils sont équipés d'un thermostat de régulation individuel, réglable, permettant un contrôle de température local. Leur circuit de commande peut aussi être commandé par une régulation centralisée. Un thermostat de sécurité les protège contre la fermeture des orifices de circulation d'air.

Ces modèles à ailettes permettent une puissance plus importante que les modèles à résistance blindée nue, en conservant des températures de surface plus basses.

Caractéristiques techniques

Encombrement: 875 × 124 × 74mm **Matière de la tôlerie:** acier électro-zingué

Eléments chauffants: un ou deux éléments blindés à ailettes de 25 × 50mm, inox 304L, longueur 700mm.

Interrupteur marche arrêt: lumineux, bipolaire

Thermostat de sécurité: à disque, réarmement manuel, ouverture à 70°C, afin de protéger contre l'arrêt de la convection par suite de l'obstruction des entrées ou sorties d'air.

Thermostat de régulation: à bulbe et capillaire, plage de réglage 4-40°C

Raccordement: bornier céramique

Charge surfacique:

Pour une utilisation sûre dans cette application, nous recommandons une charge surfacique maximale de 2.4W/cm² (15.5W/in²) pour les applications en convection naturelle (température de surface de la résistance-300°C), et de 3.6W/cm² (23.2W/in²), pour les applications en convection forcée (température de surface de la résistance ~300°C pour une vitesse d'air ~ 2.5m/s).

Voir en dernière partie de ce catalogue les températures de surface et d'air atteintes en fonctionnement ventilé et non ventilé

Tension d'alimentation: 230V. Autres valeurs sur demande

Tolérances sur la puissance: +5/-10%

Attention: les températures de surface des éléments chauffants sont élevées et peuvent occasionner des brûlures ou l'ignition de matériaux inflammables. L'intégrateur doit veiller à ce que dans son application, ces éléments chauffants ne puissent être touchés par l'utilisateur final, et ne puissent entrer en contact avec des matières combustibles. Il doit à cet effet respecter les contraintes d'installation données par les normes locales applicables.

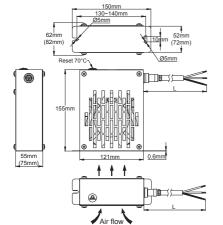
Options:

Ce produit peut être fabriqué à la demande avec des longueurs différentes. (Quantité minimale de commande applicable)

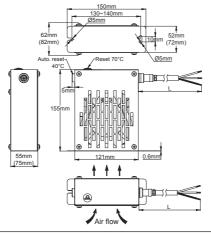
Références principales

Une résistance à ailettes				Dei	ux résistances à ailettes		
Références	Puissance totale (W)	W/cm²	W/in²	Références	Puissance totale (W)	W/cm²	W/in²
9SYL24GA123085EC	850	2.4	15.5	9SYL12GA223170EC	1700	2.4	15.5
9SYL36GA123125EC	1250	3.6	23.2	9SYL24GA223250EC	2500	3.6	23.2

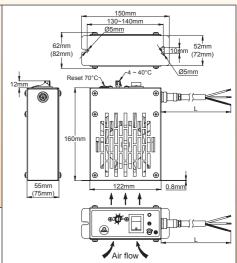
Cat24-2-4-10 Nous contacter www.ultimheat.com


Section 5 Convecteurs commerciaux et industriels

En raison de l'évolution technique constante de nos produits, les plans, dessins, photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis


Nous contacter www.ultimheat.com

Réchauffeurs d'armoire ventilés, gamme de 50 à 400W Type 9PF



Modèle 9PF1: Destiné à la commande par un thermostat ou un hygrostat externe, ne comporte qu'un limiteur à réarmement manuel à température fixe

Modèle 9PF2: Autonome, équipé d'un thermostat de régulation automatique à température fixe, et d'un limiteur à réarmement manuel à température fixe

Modèle 9PF3: Autonome, équipé d'un thermostat de régulation réglable dont la sonde est montée directement dans le flux d'air, gradué en °C et en °F, d'un thermostat de sécurité à réarmement manuel. Sur ce modèle il est possible de sélectionner deux modes de fonctionnement: un mode ventilation permanente, dans lequel le ventilateur fonctionne en permanence et le chauffage en fonction de la température du point de consigne, et un mode automatique, dans lequel la ventilation et le chauffage sont commandés simultanément par le thermostat.

Applications principales:

Réchauffage d'air robuste et durable dans les armoires et coffrets électriques par convection forcée. Ils sont utilisés en particulier dans les coffrets de contrôle du trafic, distributeurs automatiques, coffrets de distribution de puissance, panneaux de contrôle, Coffrets de vannes de régulation, boîtes de vitesse et réducteurs, consignes de gares.

Fonctionnement: Les différences de température dans les coffrets électriques, principalement lorsqu'ils sont utilisés en extérieur, provoquent souvent de la condensation, à l'origine de défauts de fonctionnement et de corrosion. L'utilisation d'un chauffage approprié dans le coffret élimine ces problèmes.

Il suffit de conserver au coffret une température supérieure à la température externe (modèles commandés par un thermostat), ou un taux d'hygrométrie inférieur à 50% (modèles commandés par un hygrostat).

Il arrive aussi que la température externe très basse fasse descendre la température à l'intérieur du coffret en dessous des températures minimales admissibles pour les composants qui y sont montés. Dans ce cas les réchauffeurs sont utilisés pour amener la température interne du coffret au-dessus de cette limite. Le ventilateur, procure une meilleure homogénéité de température dans le coffret.

Comparés aux réchauffeurs utilisant des résistances PTC, les réchauffeurs à résistances blindées offrent une robustesse inégalée, une puissance invariable dans le temps, ne vieillissent et ne dérivent pas, et ne produisent aucun pic de courant au démarrage.

Le boitier métallique offre une sécurité mécanique accrue, ainsi que la meilleure résistance à la température

Caractéristiques techniques

Elément chauffant: élément blindé diamètre 8mm en inox 304L. Autres caractéristiques de ces éléments (isolement, résistance à l'humidité, etc), voir section 4 P3

Charge surfacique: 0.5W/cm² ou 1W/cm², afin de limiter les surchauffes

Matière du boitier: Acier électro-zingué ou acier inoxydable 304, selon versions

Limiteur de sécurité à réarmement manuel: réglé à 80°C (176°F), fonctionne en cas de défaillance de la ventilation ou obstruction de l'entrée d'air.

Thermostat de régulation: Réglable de 4 à 40°C (40 to 105°F). 40°C (105°F) pour les modèles à température fixe. **Ventilateur:** 120 × 120mm, débit 100m³/h, durée de vie L10: 50,000 heures (>5 ans) à 25°C. La durée de vie L10 donne

Nous contacter www.ultimheat.com Cat24-2-5-3

En raison de l'évolution technique constante de nos produits, les plans, dessins, photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

Convecteurs commerciaux et industriels

statistiquement le temps après lequel 90% de produits fonctionnent encore. Cette durée de vie est réduite d'environ 50% lors de fonctionnement à 50-70°C.

Lampe témoin: allumée lors du fonctionnement du chauffage (sur modèle 9PF3)

Tension d'utilisation: 220/240V, 50/60Hz (100-120V sur demande)

Température d'utilisation: -45+70°C, max 90% HR

Protection: IP20

Raccordement: par connecteur avec verrouillage (cordon avec connecteur et 2 mètres de câble H05VVF 3 × 0.75mm²

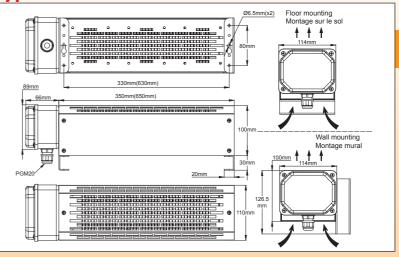
fourni)

Montage: Montage par deux vis entre axe 130 à 140mm. Nous recommandons le montage des réchauffeurs en partie basse des coffrets, qui est habituellement la zone la plus froide, avec la ventilation soufflant vers le haut, afin de créer une circulation d'air optimale.

Option: Sur demande montage par clips pour rail Din 35mm (EN60715).

Accessoires:

- Voir P 29 et 30 les thermostats et hygrostats avec montage rail DIN pour commande des réchauffeurs d'armoires électriques
- Voir en dernière partie de ce catalogue les tables de calcul de la puissance nécessaire en fonction de la température et de la taille des coffrets. (Ajouter 50% à la puissance déterminée si le coffret ou l'armoire doit être situé en plein vent)


Références Principales (acier electrozingué)

0								
Modèle 1 (pour commande à distance)	Modèle 2 (Contrôle de température fixe intégré)	Modèle 3 (Thermostat réglable intégré)	Matière du boitier	Epaisseur	Puissance (W)*			
9PF1058LG23005EC	9PF2058LG23005EC	9PF3058LG23005EC	Acier electrozingué	55mm	50W			
9PF1108LG23010EC	9PF2108LG23010EC	9PF3108LG23010EC	Acier electrozingué	55mm	100W			
9PF1058LH23020EC	9PF2058LH23020EC	9PF3058LH23020EC	Acier electrozingué	75mm	200W			
9PF1108LH23040EC	9PF2108LH23040EC	9PF3108LH23040EC	Acier electrozingué	75mm	400W			
9PF1058L423005EC	9PF2058L423005EC	9PF3058L423005EC	Acier inoxydable 304	55mm	50W			
9PF1108L423010EC	9PF2108L423010EC	9PF3108L423010EC	Acier inoxydable 304	55mm	100W			
9PF1058L523020EC	9PF2058L523020EC	9PF3058L523020EC	Acier inoxydable 304	75mm	200W			
9PF1108L523040EC	9PF2108L523040EC	9PF3108L523040EC	Acier inoxydable 304	75mm	400W			

^{*} Pour les modèles de puissance supérieure, reportez - vous à la section 5, page 7

Gamme compacte 110mm, IP65, sans ventilateur Type 9CG1

Applications principales

Ces sous-ensembles robustes, et de très petite taille, sont destinés à des intégrateurs, afin de servir d'éléments chauffants protégés dans des applications professionnelles, lorsque la régulation est réalisée par l'intégrateur. Selon la puissance surfacique choisie, ces sous-ensembles peuvent être utilisés en convection naturelle ou en ventilation forcée.

Ils sont étanches et utilisables en extérieur. Ils existent avec le capotage en acier peint ou en acier inoxydable.

Les principales applications sont le chauffage d'ateliers professionnels, le chauffage de petits volumes tels les bungalows de chantiers, les cabines de grues, d'engins de travaux publics, de wagons ou de cabines de pilotage de chemin de fer, les enceintes techniques, les étuves, les containers, les séchoirs

Caractéristiques techniques

Dimensions: 2 longueurs de corps en standard: 350 ou 650mm

Résistances chauffantes: 3 éléments à ailettes en inox 304L. Ailettes de 25 × 50mm en inox 304. Les éléments sont soudés TIG en traversée de platine, ce qui garantit leur parfaite étanchéité.

Tôlerie de protection: tôle de 0.8mm d'épaisseur, forte résistance mécanique (Supporte + de 100kg de charge répartie), deux versions possibles:

- Tôle acier zinguée, avec peinture époxy noire
- Tôle acier inoxydable 304.

ues repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

Boitier de raccordement: 114mm × 89mm × 66mm, aluminium moulé sous pression, avec joint silicone surmoulé. IP65. Peinture époxy grise. Visserie inox. Sortie par presse étoupe M20 en PA66.

Fixation: par 2 pattes amovibles, pouvant se monter sous le capotage (montage sur support horizontal) ou sur le côté (montage mural).

Raccordement électrique interne: sur bornier céramique 4 bornes 6mm².

Tension d'alimentation: les 3 éléments chauffants sont réalisés en 230V, ce qui permet un raccordement en monophasé (résistances câblées en parallèle) ou en triphasé, (résistances câblées en étoile). Autre tensions possible sur demande.

Puissance: de 1500 à 4500W selon modèles

Température ambiante: -50+150°C

raison de l'évolution technique constante

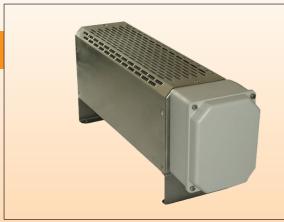
Nous recommandons une charge surfacique maximale de 3W/cm² (20W/in²) pour les applications en convection naturelle, et de 4.5W/cm² (30W/in²), pour les applications en convection forcée (Vitesse d'air >2m/s).

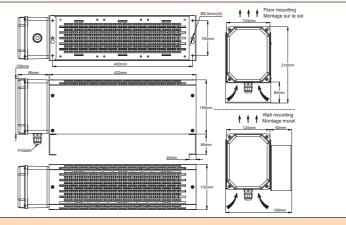
Ces appareils ne comportent pas de système de ventilation forcée. Celui-ci doit, s'il est nécessaire dans l'application, être installé par l'intégrateur.

Voir en dernière partie de ce catalogue les températures de surface et d'air atteintes en fonctionnement ventilé et non ventilé.

Poids net: 3.3kg (350mm); 5.2kg (650mm)

Option: Incorporation d'un limiteur de sécurité à réarmement manuel, à disque ou à capillaire. (La détermination de la température de déclenchement est fonction de l'application et doit être définie par l'intégrateur).


Références avec alimentation 230V


Corps en acier peint					Corps en	acier inoxydal	ole 304		
Références	Puissance (W)	L	W/cm ²	W/in²	References	Power (W)	L	W/cm²	W/in²
9CG13N23023150EB	1500	350	3	20	9CG13N23023150E4	1500	350	3	20
9CG13N24523225EB	2250	350	4.5*	30	9CG13N24523225E4	2250	350	4.5*	30
9CG16N23023300EB	3000	650	3	20	9CG16N23023300E4	3000	600	3	20
9CG16N24523450EB	4500	650	4.5*	30	9CG16N24523450E4	4000	600	4.5*	30

Ventilation forcée ≥2m/s obligatoire

Cat24-2-5-5 Nous contacter www.ultimheat.com

Gamme 130mm, IP65, sans ventilateur Type 9CG3

Applications principales

Ces sous-ensembles robustes, sont destinés à des intégrateurs, afin de servir d'éléments chauffants protégés dans des applications professionnelles, lorsque la régulation est réalisée par l'intégrateur.

Selon la puissance surfacique choisie, ces sous-ensembles peuvent être utilisés en convection naturelle ou en ventilation forcée.

Ils sont étanches et utilisables en extérieur. Ils existent avec le capotage en acier peint ou en acier inoxydable.

Les principales applications sont le chauffage d'ateliers professionnels, le chauffage de petits volumes tels les bungalows de chantiers, les cabines de grues, d'engins de travaux publics, de wagons ou de cabines de pilotage de chemin de fer, les enceintes techniques, les étuves, les containers, les séchoirs

Caractéristiques techniques

Dimensions: corps de 420mmx130mmx155mm

Résistances chauffantes: 3 ou 6 éléments à ailettes en Inox 304L. Ailettes de 25 × 50mm en inox 304. Les éléments sont soudés TIG en traversée de platine, ce qui garantit leur parfaite étanchéité.

Tôlerie de protection: tôle de 0.8mm d'épaisseur, forte résistance mécanique (Supporte + de 100kg de charge répartie), deux versions possibles:

- Tôle acier zinguée, avec peinture époxy noire
- Tôle acier inoxydable 304.

Boitier de raccordement: 159mmx124mmx89mm; aluminium moulé sous pression avec joint silicone surmoulé; IP65; peinture époxy grise; visserie inox. Sortie par presse étoupe M25 en PA66.

Fixation: par 2 pattes amovibles, pouvant se monter sous le capotage (montage sur support horizontal) ou sur le côté (montage mural)

Raccordement électrique interne: sur bornier céramique 4 bornes 10mm².

Tension d'alimentation: les 3 éléments chauffants sont réalisés en 230V, ce qui permet un raccordement en monophasé (résistances câblées en parallèle) ou en triphasé, (résistances câblées en étoile). Autre tensions possible sur demande.

Puissance: de 1500 à 4500W selon modèles

Température ambiante: -50+150°C

Charge surfacique:

Nous recommandons une charge surfacique maximale de 3W/cm² (20W/in²) pour les applications en convection naturelle, et de 4.5 W/cm² (30W/in²), pour les applications en convection forcée (Vitesse d'air >2m/s).

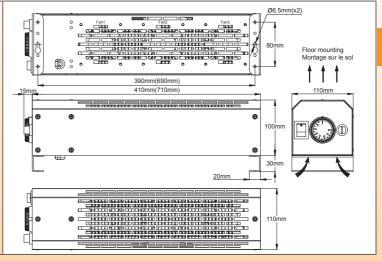
Ces appareils ne comportent pas de système de ventilation forcée. Celui-ci doit, s'il est nécessaire dans l'application, être installé par l'intégrateur.

Voir en dernière partie de ce catalogue les températures de surface et d'air atteintes en fonctionnement ventilé et nonventilé.

Poids net: 6.4kg

Option: Incorporation d'un limiteur de sécurité à réarmement manuel, à disque ou à capillaire. (La détermination de la température de déclenchement est fonction de l'application et doit être définie par l'intégrateur).

Références avec alimentation 230V


	Corps en acier peint noir				Co	rps en acier in	oxydable 304		
Références	Puissance (W)	Nombre d'éléments chauffants	W/cm²	W/in²	Références	Puissance (W)	Nombre d'éléments chauffants	W/cm²	W/in²
9CG34G33023200EB	2000	3	3	20	9CG34G33023200E4	2000	3	3	20
9CG34G34523230EB	2300	3	4.5*	30	9CG34G34523230E4	2300	3	4.5*	30
9CG34G63023400EB	4000	6	3	20	9CG34G63023400E4	4000	6	3	20
9CG34G64523460EB	4600	6	4.5*	30	9CG34G64523460E4	4600	6	4.5*	30

^{*} Ventilation forcée ≥2m/s obligatoire

description fechnique constante de nos produits, les plans, dessins, photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

Modèles soufflant vers le haut Type 9CH

Applications principales

Ces convecteurs soufflants, de conception robuste, se caractérisent par leur très petite taille, et sont destinés à des applications professionnelles, commerciales ou industrielles.

Ils sont équipés de 3 ventilateurs extra-plats, d'un interrupteur marche arrêt lumineux bipolaire, d'un thermostat de régulation et d'un thermostat de sécurité.

Bien que leurs éléments chauffants soient blindés et étanches, leur boitier de contrôle et les ventilateurs ne sont pas et ils ne doivent pas être utilisés en extérieur. Leur isolation classe 1 ne permet pas de les utiliser en salle de bains et en tous lieux requérant une isolation classe II. Ils ne sont pas non plus utilisables en milieux explosibles.

Ils existent en acier peint ou en acier inoxydable.

Leurs principales applications sont le chauffage de locaux commerciaux et professionnels, le chauffage de petits volumes tels les bungalows de chantiers, les cabines de grues, d'engins de travaux publics, de wagons ou de cabines de pilotage de chemin de fer, les enceintes techniques, les étuves, les containers, les séchoirs. Ils peuvent aussi être utilisés comme réchauffeurs d'armoires électriques lorsque celles-ci sont de grande taille.

Caractéristiques techniques

Dimensions: 2 longueurs de corps en standard: 410 ou 710mm

Protection: IP41

Résistances chauffantes: 3 éléments à ailettes en inox 304L. Ailettes de 25 × 50mm en inox 304. Charge des éléments 3W/cm².

En raison de l'évolution technique constante

techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

Tôlerie de protection: tôle de 0.8mm d'épaisseur, forte résistance mécanique (Supporte + de 100kg de charge répartie), deux versions possibles:

- Tôle acier zinguée, avec peinture époxy noire
- Tôle acier inoxydable 304.

Ventilateurs: 3 ventilateurs de 80 × 80mm, débit: 3x 30m³/h. Durée de vie L10: 50,000 heures (>5ans) à 25°C. (La durée de vie L10 donne statistiquement le temps après lequel 90% de produits fonctionnent encore. Cette durée de vie est réduite d'environ 50% lors de fonctionnement à 50-70°C).

Régulation: Thermostat de régulation mécanique, à bulbe et capillaire, plage 4-40°C, et thermostat à sécurité positive à réarmement manuel protégeant contre l'obstruction des orifices de ventilation, ou l'arrêt de fonctionnement des ventilateurs.

Raccordement électrique: par cordon de 2 mètres, 3 × 1.5mm², avec prise de terre.

Fixation: par 2 pattes amovibles, pouvant se monter sous le capotage (montage sur support horizontal) ou sur le côté (montage mural).

Tension d'alimentation: 230Vmonophasé, 50/60Hz. Autre tensions possible sur demande.

Puissance: de 1500 (410mm) et 3000W (710mm) selon modèles

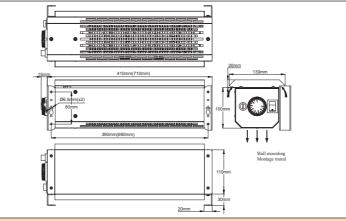
Température ambiante: -20+60°C

Poids net: 4.1kg (410mm); 5.9kg (710mm)

Option: personnalisation possible

Références avec alimentation 230V

Corps	en acier peint		Corps en a	cier inoxydable 304	
Références	Puissance (W)	L	Références	Puissance (W)	L
9CH14033023150HB	1500	410	9CH14033023150H4	1500	410
9CH17033023300HB	3000	710	9CH17033023300H4	3000	710


Cat24-2-5-7 Nous contacter www.ultimheat.com

2

Modèles soufflant vers le bas

Type 9CL

Applications principales

Ces convecteurs soufflants vers le bas, de conception robuste, se caractérisent par leur très petite taille, et sont destinés à des applications professionnelles, commerciales ou industrielles.

Ils se fixent sur une paroi verticale, à plus de 40cm du sol ou d'une paroi.

Ils sont équipés d'une chicane de protection de l'entrée d'air protégeant les ventilateurs des chutes de liquides ou de particules.

Ils sont équipés de 3 ventilateurs extra-plats, d'un interrupteur marche arrêt lumineux bipolaire, d'un thermostat de régulation et d'un thermostat de sécurité.

Leur utilisation en extérieur doit se faire dans un endroit abrité des chutes de pluie directes. Leur isolation classe 1 ne permet pas de les utiliser en salle de bains et en tous lieux requérant une isolation classe IL Ils ne sont pas non plus utilisables en milieux explosibles. Leurs principales applications sont le chauffage de locaux commerciaux et professionnels, le chauffage de petits volumes tels les bungalows de chantiers, les cabines de grues, d'engins de travaux publics, de wagons ou de cabines de pilotage de chemin de fer, les enceintes techniques, les étuves, les containers, les séchoirs.

Caractéristiques techniques

Dimensions: 2 longueurs de corps en standard: 410 ou 710mm

Protection: IP44

Résistances chauffantes: 3 éléments à ailettes en inox 304L. Ailettes de 25 × 50mm en inox 304. Charge des éléments 3W/cm².

Tôlerie de protection: tôle de 0.8mm d'épaisseur, forte résistance mécanique (Supporte + de 100kg de charge répartie), deux versions possibles:

- Tôle acier zinguée, avec peinture époxy noire
- Tôle acier inoxydable 304.

Ventilateurs: 3 ventilateurs de 80 × 80mm, débit: 3 × 30m³/h. Durée de vie L10: 50,000 heures (>5ans) à 25°C. (La durée de vie L10 donne statistiquement le temps après lequel 90% de produits fonctionnent encore. Cette durée de vie est réduite d'environ 50% lors de fonctionnement à 50-70°C).

Régulation: Thermostat de régulation mécanique, à bulbe et capillaire, plage 4-40°C, et thermostat à sécurité positive à réarmement manuel protégeant contre l'obstruction des orifices de ventilation, ou l'arrêt de fonctionnement des ventilateurs. (Protégés contre les pénétrations d'eau)

Interrupteur: bipolaire marche arrêt lumineux, avec capuchon d'étanchéïté

Raccordement électrique: par cordon de 2 mètres, 3×1.5 mm², avec prise de terre.

Fixation: par 2 pattes, permettant le montage mural

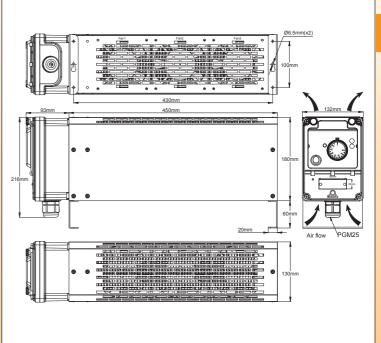
Tension d'alimentation: 230Vmonophasé, 50/60Hz. Autre tensions possible sur demande.

Puissance: de 1500 (410mm) et 3000W (710mm) selon modèles

Température ambiante: -20+60°C Poids net: 4.6kg (410mm); 6.8kg (710mm) Option: personnalisation possible.

Références avec alimentation 230V

Corps en acier peint			Corps en a	cier inoxydable 30)4
Références	Puissance (W)	L	Références	Puissance (W)	L
9CL14033023150HB	1500	410	9CL14033023150H4	1500	410
9CL17033023300HB	3000	710	9CL17033023300H4	3000	710


^{*} Ventilation forcée ≥2m/s obligatoire

Cat24-2-5-8 Nous contacter www.ultimheat.com

Modèles soufflant vers le haut, contrôle thermostatique Type 9CJ

et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

Applications principales

Ces convecteurs soufflants, de conception robuste, sont destinés à des applications professionnelles, commerciales ou industrielles.

Ils sont équipés de 3 ventilateurs silencieux à fort débit, d'un coffret de commande étanche comportant un interrupteur marche arrêt lumineux bipolaire, d'un thermostat de régulation, d'un thermostat de sécurité, et d un dispositif de sécurité anti-basculement.

Bien que leurs éléments chauffants et leur boitier de contrôle soient étanches, les ventilateurs ne le sont pas, et ils ne doivent pas être utilisés en extérieur si les orifices supérieurs servant à la sortie d'air chaud ne sont pas à l'abri des projections de liquide ou de la pluie.

Pour une utilisation en extérieur, privilégiez les modèles sans ventilateurs. Leur isolation classe 1 ne permet pas de les utiliser en salle de bains et en tous lieux requérant une isolation classe II. Ils ne sont pas non plus utilisables en milieux explosibles.

Ils existent en acier peint ou en acier inoxydable.

Leurs principales applications sont le chauffage de locaux commerciaux et professionnels, le chauffage des bungalows de chantiers, les cabines de grues, d'engins de travaux publics, de wagons ou de cabines de pilotage de chemin de fer, les enceintes techniques, les étuves, les containers, les séchoirs.

Caractéristiques techniques

Dimensions: corps de 450mm × 130 × 150mm (coffret de contrôle et pattes de fixation non compris)

Protection: IP40 (modèles ventilés) ou IP65 (modèles sans ventilateurs)

Résistances chauffantes: 3 ou 6 éléments à ailettes en inox 304L. Ailettes de 25 × 50mm en Inox 304. Charge des éléments: 3W/cm² pour les modèles ventilés et 2W/cm² pour les modèles sans ventilateur.

Tôlerie de protection: tôle de 0.8mm d'épaisseur, forte résistance mécanique (Supporte + de 100kg de charge répartie), deux versions possibles:

- Tôle acier zinguée, avec peinture époxy noire
- Tôle acier inoxydable 304.

Ventilateurs (pour modèles avec ventilateurs): 3 ventilateurs de 120 × 120mm, débit: 3 × 100m³/h. Durée de vie L10: 50,000 heures (>5 ans) à 25°C. (La durée de vie L10 donne statistiquement le temps après lequel 90% de produits fonctionnent encore. Cette durée de vie est réduite d'environ 50% lors de fonctionnement à 50-70°C).

Située dans un boitier de protection en PA66, IP65, IK10, avec fenêtre plombable, donnant accès aux réglages,

- Thermostat à sécurité positive à réarmement manuel protégeant contre l'obstruction des orifices de ventilation, ou l'arrêt de fonctionnement des ventilateurs.

Raccordement électrique: par cordon de 2 mètres, 3 × 1.5mm², avec prise de terre. (Modèle triphasé livré sans cordon)

Régulation: Comportant: - Thermostat de régulation mécanique, à bulbe et capillaire, plage 4-40°C, - Sécurité anti-basculement coupant l'alimentation électrique Nous contacter www.ultimheat.com

Cat24-2-5-9

En raison de l'évolution technique constante de nos produits, les plans, dessins, photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

Convecteurs commerciaux et industriels

Fixation: par 2 pattes amovibles, pouvant se monter sous le capotage (montage sur support horizontal) ou sur le côté (montage mural).

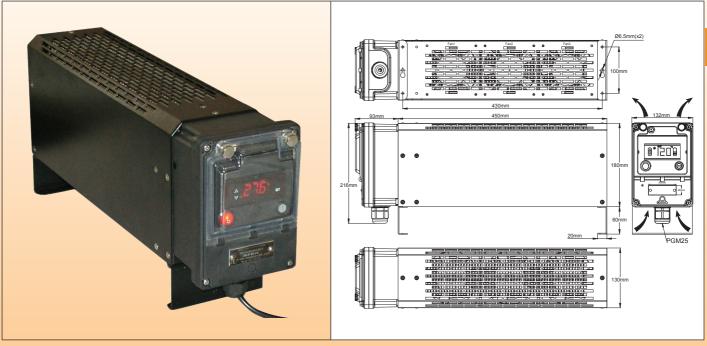
Tension d'alimentation: 230Vmonophasé, 50/60Hz ou 400V triphasé avec neutre

Puissance:

- IP40 monophasé: 2000W, 3500W; Modèle IP40 triphasé: 4000W.
 - IP65 monophasé: 1300W, 2600W; Modèle IP40 triphasé: 2600W.

Température ambiante: -20+60°C

Poids net: 8.1kg Options:


- Télécommande infra-rouge marche arrêt

- Personnalisation possible

1 craominisation possible								
Références, version IP40 avec ventilateurs								
Corps en acier peint Corps en acier inoxydable 304								
Références	Puissance (W)	Tension (V)	Références	Puissance (W)	Tension (V)			
9CJ34Y33023200HB	2000	230	9CJ34Y33023200H4	2000	230			
9CJ34Y63023300HB	3500	230	9CJ34Y63023300H4	3500	230			
9CJ34Y630433000B	4000	3 × 400	9CJ34Y6304330004	4000	3 × 400			

Références, version IP65 sans ventilateurs							
Corps en acier peint Corps en acier inoxydable 304							
Références	Puissance (W)	Tension (V)	Références	Puissance (W)	Tension (V)		
9CJ3DY32023130HB	1300	230	9CJ3DY32023130H4	1300	230		
9CJ3DY23023260HB	2600	230	9CJ3DY62023260H4	2600	230		
9CJ3DY620432600B	2600	3 × 400	9CJ3DY6204326004	2600	3 × 400		

Modèles soufflant vers le haut, contrôle électronique Type 9CK

Applications principales

Ces convecteurs soufflants, de conception robuste, sont destinés à des applications professionnelles, commerciales ou industrielles. Ils sont équipés de 3 ventilateurs silencieux à fort débit, d'un coffret de commande étanche comportant un interrupteur marche arrêt lumineux bipolaire, d'un régulateur électronique de température à affichage digital, d'un thermostat de sécurité, et d'un dispositif de sécurité anti-basculement.

Bien que leurs éléments chauffants et leur boîtier de contrôle soient étanches, les ventilateurs ne le sont pas, et ils ne doivent pas être utilisés en extérieur si les orifices supérieurs servant à la sortie d'air chaud ne sont pas à l'abri des projections de liquide ou de la pluie.

Pour une utilisation en extérieur, privilégiez les modèles sans ventilateurs.

Leur isolation classe 1 ne permet pas de les utiliser en salle de bains et en tous lieux requérant une isolation classe II. Ils ne sont pas non plus utilisables en milieux explosibles.

Ils existent en acier peint ou en acier inoxydable.

Leurs principales applications sont le chauffage de locaux commerciaux et professionnels, le chauffage des bungalows de chantiers, les cabines de grues, d'engins de travaux publics, de wagons ou de cabines de pilotage de chemin de fer, les enceintes techniques, les étuves, les containers, les séchoirs.

Caractéristiques techniques

Dimensions: Corps de 450mm × 130 × 150mm (coffret de contrôle et pattes de fixation non compris)

Protection: IP40 (version avec ventilateurs) ou IP65 (version sans ventilateurs)

Résistances chauffantes: 3 ou 6 éléments à ailettes en inox 304L. Ailettes de 25 × 50mm en inox 304. Charge des éléments: 3W/cm² pour les modèles ventilés et 2W/cm² pour les modèles sans ventilateur.

Tôlerie de protection: tôle de 0.8mm d'épaisseur, forte résistance mécanique (Supporte + de 100kg de charge répartie), deux versions possibles:

- Tôle acier zinguée, avec peinture époxy noire
- Tôle acier inoxydable 304.

Ventilateurs (pour version avec ventilateurs uniquement): 3 ventilateurs de 120 × 120mm, débit: 3 × 100m7h. Durée de vie L10: 50,000 heures (>5 ans) à 25°C. (La durée de vie L10 donne statistiquement le temps après lequel 90% de produits fonctionnent encore. Cette durée de vie est réduite d'environ 50% lors de fonctionnement à 50-70°C). **Régulation:**

Située dans un boitier de protection IP65, IK10, avec fenêtre plombable, donnant accès aux réglages, et comportant:

- Régulateur électronique de température, avec différentielle réglable et affichage digital au 1/10°, plage 4-40°C (affichage en °F paramétrable)
- Thermostat à sécurité positive à réarmement manuel protégeant contre l'obstruction des orifices de ventilation, ou l'arrêt de fonctionnement des ventilateurs.
- Sécurité anti-basculement coupant l'alimentation électrique

Raccordement électrique: par cordon de 2 mètres, 3 × 1.5mm², avec prise de terre. (Modèle triphasé livré sans cordon) **Fixation:** par 2 pattes amovibles, pouvant se monter sous le capotage (montage sur support horizontal) ou sur le côté (montage mural).

Nous contacter www.ultimheat.com Cat24-2-5-11

En raison de l'évolution technique constante de nos produits, les plans, dessins, photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

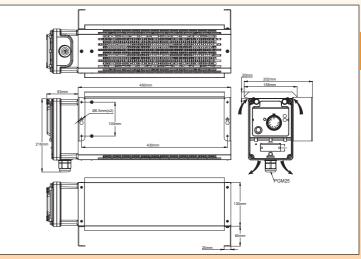
Convecteurs commerciaux et industriels

Tension d'alimentation: 230Vmonophasé, 50/60Hz ou 400V triphasé avec neutre Puissance: - IP40 monophasé: 2000W, 3500W; Modèle IP40 triphasé: 4000W. - IP65 monophasé: 1300W, 2600W; Modèle IP40 triphasé: 2600W.

Température ambiante: -20+60°C

Poids net: 8.4kg Options:

- Télé commande infrarouge marche-arrêt.


- Personnalisation possible.

Références, version IP40 avec ventilateurs							
Corps en acier peint Corps en acier inoxydable 304							
Références	Puissance (W)	Tension (V)	Références	Puissance (W)	Tension (V)		
9СК34Ү33023200НВ	2000	230	9CK34Y33023200H4	2000	230		
9СК34Ү63023300НВ	3500	230	9CK34Y63023300H4	3500	230		
9CK34Y630433000B	4000	3 × 400	9CK34Y6304330004	4000	3 × 400		

Références, version IP65 sans ventilateurs							
Black pain	ted steel frame		304 stai	nless steel frame			
Références Puissance Tension (W) (V)			Références	Puissance (W)	Tension (V)		
9CK3DY32023130HB	1300	230	9CK3DY32023130H4	1300	230		
9CK3DY23023260HB	2600	230	9CK3DY62023260H4	2600	230		
9CK3DY620432600B	2600	3 × 400	9CK3DY6204326004	2600	3 × 400		

Modèles soufflant vers le bas, contrôle thermostatique Type 9CR

Applications principales

Ces convecteurs soufflants vers le bas, de conception robuste, sont destinés à des applications professionnelles, commerciales ou industrielles.

techniques sont communiqués sans engagement et peuvent être modifiés sans préavis Ils se fixent sur une paroi verticale, à plus de 40cms du sol ou d'une paroi.

Ils sont équipés d'une chicane de protection de l'entrée d'air protégeant les ventilateurs des chutes de liquides ou de particules. Ils sont équipés de 3 ventilateurs silencieux à fort débit, d'un coffret de commande étanche comportant un interrupteur marche arrêt lumineux bipolaire, d'un thermostat de régulation, et d'un thermostat de sécurité

Leur isolation classe 1 ne permet pas de les utiliser en salle de bains et en tous lieux requérant une isolation classe II. Ils ne sont pas non plus utilisables en milieux explosibles.

Ils existent en acier peint ou en acier inoxydable.

Leurs principales applications sont le chauffage de locaux commerciaux et professionnels, le chauffage des bungalows de chantiers, les cabines de grues, d'engins de travaux publics, de wagons ou de cabines de pilotage de chemin de fer, les enceintes techniques, les étuves, les containers, les séchoirs.

Caractéristiques techniques

Dimensions: Corps de 450mm × 130 × 150mm (coffret de contrôle et pattes de fixation non compris)

Protection: IP44

Résistances chauffantes: 3 ou 6 éléments à ailettes en inox 304L. Ailettes de 25 × 50mm en inox 304. Charge des éléments:

Tôlerie de protection: tôle de 0.8mm d'épaisseur, forte résistance mécanique (Supporte + de 100kg de charge répartie), deux versions possibles:

- Tôle acier zinguée, avec peinture époxy noire

- Tôle acier inoxydable 304.

Ventilateurs: 3 ventilateurs de 120 × 120mm, débit: 3 × 100m³/h. Durée de vie L10: 50,000 heures (>5 ans) à 25°C. (La durée de vie L10 donne statistiquement le temps après lequel 90% de produits fonctionnent encore. Cette durée de vie est réduite d'environ 50% lors de fonctionnement à 50-70°C).

Régulation:

Située dans un boitier de protection en PA66, IP65, IK10, avec fenêtre plombable, donnant accès aux réglages, comportant:

- Thermostat de régulation mécanique, à bulbe et capillaire, plage 4-40°C,

- Thermostat à sécurité positive à réarmement manuel protégeant contre l'obstruction des orifices de ventilation, ou l'arrêt de fonctionnement des ventilateurs.

Raccordement électrique: par cordon de 2 mètres, 3 × 1.5mm², avec prise de terre. (Modèle triphasé livré sans cordon)

Fixation: par 2 pattes, permettant le montage mural

Tension d'alimentation: 230Vmonophasé, 50/60Hz ou 400V triphasé avec neutre

En raison de l'évolution technique constante

monophasé: 2000W, 3500W; Modèle IP40 triphasé: 4000W.

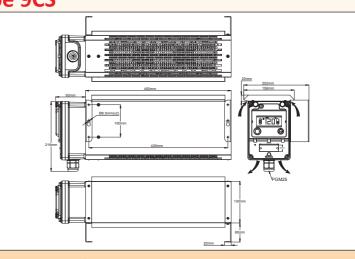
Température ambiante: -20+60°C

Poids net: 8.8kg

Options: - Télécommande marche arrêt infrarouge, - Personnalisation possible

Références

Corps en acier peint			Corps en a	acier inoxydable 304	
Références	Puissance (W)	Tension (V)	Références	Puissance (W)	Tension (V)
9CR34Y33023200HB	2000	230	9CR34Y33023200H4	2000	230
9CR34Y63023300HB	3500	230	9CR34Y63023300H4	3500	230
9CR34Y630433000B	4000	3 × 400	9CR34Y6304330004	4000	3 × 400


Cat24-2-5-13 Nous contacter www.ultimheat.com

les plans, dessins, photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

En raison de l'évolution technique constante de nos produits,

Contrôle électronique Type 9CS

Applications principales

Ces convecteurs soufflants vers le bas, de conception robuste, sont destinés à des applications professionnelles, commerciales ou industrielles.

Ils se fixent sur une paroi verticale, à plus de 40cms du sol ou d'une paroi.

Ils sont équipés d'une chicane de protection de l'entrée d'air protégeant les ventilateurs des chutes de liquides ou de particules. Ils sont équipés de 3 ventilateurs silencieux à fort débit, d'un coffret de commande étanche comportant un interrupteur marche arrêt lumineux bipolaire, d'un régulateur électronique de température à affichage digital, et d'un thermostat de sécurité.

Leur isolation classe 1 ne permet pas de les utiliser en salle de bains et en tous lieux requérant une isolation classe II. Ils ne sont pas non plus utilisables en milieux explosibles.

Ils existent en acier peint ou en acier inoxydable.

Leurs principales applications sont le chauffage de locaux commerciaux et professionnels, le chauffage des bungalows de chantiers, les cabines de grues, d'engins de travaux publics, de wagons ou de cabines de pilotage de chemin de fer, les enceintes techniques, les étuves, les containers, les séchoirs.

Caractéristiques techniques

Dimensions: corps de 450mm × 130 × 150mm (coffret de contrôle et pattes de fixation non compris)

Protection: IP44

Résistances chauffantes: 3 ou 6 éléments à ailettes en inox 304L. Ailettes de 25 × 50mm en inox 304. Charge des éléments: 3W/cm²

Tôlerie de protection: tôle de 0.8mm d'épaisseur, forte résistance mécanique (Supporte + de 100kg de charge répartie), deux versions possibles:

- Tôle acier zinguée, avec peinture époxy noire
- Tôle acier inoxydable 304.

Ventilateurs (pour version avec ventilateurs uniquement): 3 ventilateurs de 120 × 120mm, débit: 3 × 100m³/h. Durée de vie L10: 50,000 heures (>5 ans) à 25°C. (La durée de vie L10 donne statistiquement le temps après lequel 90% de produits fonctionnent encore. Cette durée de vie est réduite d'environ 50% lors de fonctionnement à 50-70°C).

Régulation:

Située dans un boitier de protection en PA66, IP65, IK10, avec fenêtre plombable, donnant accès aux réglages, et comportant: - Régulateur électronique de température, avec différentielle réglable et affichage digital au 1/10°, plage 4-40°C (affichage en

- Thermostat à sécurité positive à réarmement manuel protégeant contre l'obstruction des orifices de ventilation, ou l'arrêt de fonctionnement des ventilateurs.

Racccordement électrique: par cordon de 2 mètres, 3 × 1.5mm², avec prise de terre. (Modèle triphasé livré sans cordon)

Fixation: par 2 pattes sur le côté (montage mural).

Tension d'alimentation: 230Vmonophasé, 50/60Hz ou 400V triphasé avec neutre

Puissance: Monophasé: 2000W, 3500W; Modèle triphasé: 4000W.

Température ambiante: -20+60°C

Poids net: 9.1kg **Options:**

- Télécommande infrarouge marche arrêt

- Personnalisation possible

Références

11010101000							
Corps en	acier peint		Corps en ac	ier inoxydable 30)4		
Références	Puissance (W)	Tension (V)	Références	Puissance (W)	Tension (V)		
9CS34Y33023200HB	2000	230	9CS34Y33023200H4	2000	230		
9CS34Y63023300HB	3500	230	9CS34Y63023300H4	3500	230		
9CS34Y630433000B	4000	3 × 400	9CS34Y6304330004	4000	3 × 400		

Cat24-2-5-14 Nous contacter www.ultimheat.com

Section 6 Convecteurs industriels étanche

En raison de l'évolution technique constante de nos produits, les plans, dessins, photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

Nous contacter www.ultimheat.com

En raison de l'évolution technique constante de nos produits, les plans, dessins, photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

Petits radiateurs électriques industriels, à convection naturelle, largeur 110mm étanchéité IP69K (lavable au laveur à eau chaude sous pression), résistance aux chocs IK10, à 1 ou 2 éléments chauffants à ailettes, 600W et 1200W.

Type 9CA

A: Version posé au sol (pieds assemblés en dessous); B: Version montage mural (pieds assemblés sur le côté) 1: Manette étanche du thermostat mécanique ou électronique; 2: Interrupteur marche-arrêt bipolaire étanche; 3: Voyant Led étanche;

4: Plaque d'identification personnalisable en acier inoxydable; 5: Pieds en élastomère

Applications principales

Ces convecteurs sont destinés à des applications professionnelles, commerciales ou industrielles. Ils sont exceptionnellement robustes et lavables à l'eau chaude sous haute pression.

Ils sont équipés d'un coffret de commande étanche comportant un interrupteur marche arrêt omnipolaire, d'un voyant, d'un thermostat de régulation mécanique ou électronique, d'un thermostat de sécurité, et d'un dispositif de sécurité antihasculement

Ils ne sont pas utilisables en milieux explosibles.

Ils existent avec capotage en acier peint ou en acier inoxydable.

Leurs principales applications sont le chauffage de locaux commerciaux et professionnels, le chauffage des bungalows de chantiers, les cabines de grues, d'engins de travaux publics, de wagons ou de cabines de pilotage de chemin de fer, les enceintes techniques, les étuves, les containers, les séchoirs, les laboratoires pharmaceutiques et alimentaires, les locaux d'élevage, les équipements militaires, et les armoires de commande.

Caractéristiques techniques

Dimensions: Corps chauffant de 600mm × 110 × 110mm. (Pattes de fixation non comprises). Longueur totale 670mm.

Protection: Contre eau et poussière: IP69K; contre les chocs: IK10

Résistances chauffantes: 1 ou 2 éléments à ailettes en inox 304L. Ailettes de 25 × 50mm en inox 304. Charge des éléments: 2W/cm². Tôlerie de protection: tôle de 0.8mm d'épaisseur, forte résistance mécanique (Supporte + de 100kg de charge répartie), deux versions possibles:

- Tôle acier avec peinture époxy. Couleur standard noire. Couleur Gris RAL 7035 possible avec minimum de mise en fabrication de 100p.
- Tôle acier inoxydable 304.

Régulation: Située dans un boitier de protection en aluminium laqué au four, plombable, comportant:

- Un thermostat de régulation mécanique ou électronique, plage 4-40°C.
- Un limiteur à disque à réarmement manuel protégeant contre l'obstruction des orifices de ventilation.
- Une sécurité anti-basculement coupant l'alimentation électrique.

Raccordement électrique: par cordon H05RR-F de 2 mètres, 3 × 1mm².

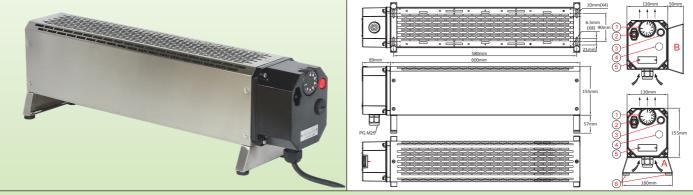
Fixation: par 2 pattes amovibles, pouvant se monter sous le capotage (montage au sol mobile ou fixe) ou sur le côté (montage mural).

Tension d'alimentation: 230Vmonophasé, 50/60Hz.

Puissance: 600W (1 élément) ou 1200W (2 éléments).

Température ambiante: -20+60°C.

Poids net: 4.7kg.


Références avec thermostat mécanique 4-40°C, différentielle inférieure à 1°C								
Corps 6	en acier peint		Corps en acier	inoxydable 304				
Références Puissance (W) Tension (V) Références Puissance (W) Tension (V)								
9CAR7S12023060EB	600	230	9CAR7S12023060EH	600	230			
9CAR7S22023120EB	1200	230	9CAR7S22023120EH	1200	230			
Référenc	Références avec thermostat électronique 4-40°C, différentielle inférieure à 0.3°C							

References avec thermostat electronique 4-40°C, unferentielle inferieure a 0.5°C							
Corps en acier peint			Corps en acier inoxydable 304				
Références	Puissance (W)	Tension (V)	sion (V) Références Puissance (W) Tens				
9CAV7S12023060EB	600	230	9CAV7S12023060EH	600	230		
9CAV7S22023120EB	1200	230	9CAV7S22023120EH	1200	230		

Convecteurs industriels étanche

Radiateurs électriques industriels, à convection naturelle, largeur 130mm étanchéité IP69K (lavable au laveur à eau chaude sous pression), résistance aux chocs IK10, à 3 ou 6 éléments chauffants à ailettes, 1750W et 3500W.

Type 9CB

- A: Version posé au sol (pieds assemblés en dessous); B: Version montage mural (pieds assemblés sur le côté)

 1: Manette étanche du thermostat mécanique ou électronique; 2: Interrupteur marche-arrêt bipolaire étanche;3: Voyant Led étanche
- 4: Bouton de réarmement du limiteur de sécurité, sous bouchon vissé; 5: Plaque d'identification personnalisable en acier inoxydable; 6: Pieds en élastomère

Applications principales

Ces convecteurs sont destinés à des applications professionnelles, commerciales ou industrielles. Ils sont exceptionnellement robustes et lavables au karcher à eau chaude.

Ils sont équipés d'un coffret de commande étanche comportant un interrupteur marche arrêt omnipolaire, d'un voyant, d'un thermostat de régulation mécanique ou électronique, d'un thermostat de sécurité, et d'un dispositif de sécurité antibasculement.

Ils ne sont pas utilisables en milieux explosibles.

Ils existent avec capotage en acier peint ou en acier inoxydable.

Leurs principales applications sont le chauffage de locaux commerciaux et professionnels, le chauffage des bungalows de chantiers, les cabines de grues, d'engins de travaux publics, de wagons ou de cabines de pilotage de chemin de fer, les enceintes techniques, les étuves, les containers, les séchoirs, les laboratoires pharmaceutiques et alimentaires, les locaux d'élevage, les équipements militaires.

Caractéristiques techniques

Dimensions: Corps chauffant de 600mm × 130 × 150mm (pattes de fixation non comprises). Longueur totale 690mm. Protection: IP69K et IK10.

Résistances chauffantes: 3 ou 6 éléments à ailettes en inox 304L. Ailettes de 25 × 50mm en inox 304. Charge des éléments: 2W/cm². Tôlerie de protection: tôle de 0.8mm d'épaisseur, forte résistance mécanique (Supporte + de 100kg de charge répartie), deux versions possibles:

- Tôle acier avec peinture époxy. Couleur standard: noire. Couleur Gris RAL 7035 possible avec minimum de mise en fabrication de 100p.
- Tôle acier inoxydable 304.

Régulation: Située dans un boitier de protection en aluminium laqué au four, plombable, comportant:

- Un thermostat de régulation mécanique ou électronique, plage 4-40°C.
- Un limiteur à sécurité positive à réarmement manuel protégeant contre l'obstruction des orifices de ventilation.
- Une sécurité anti-basculement coupant l'alimentation électrique.

Raccordement électrique: par cordon H05RR-F de 2 mètres, 3 × 1.5mm² (monophasé 1750W), 3 × 2.5mm², (monophasé 3500W) ou 5 × 1.5mm² (triphasé 3500W).

Fixation: par 2 pattes amovibles, pouvant se monter sous le capotage (montage au sol mobile ou fixe) ou sur le côté (montage mural). **Tension d'alimentation:** 230V monophasé, 50/60Hz ou 400V triphasé avec neutre.

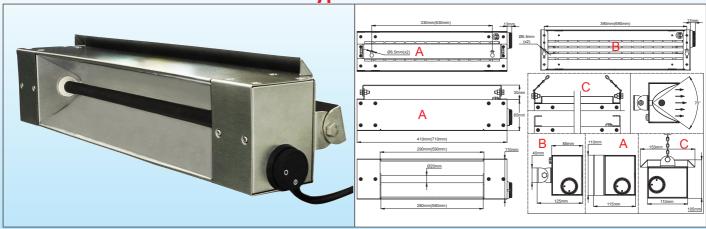
Puissance: 1750W (3 éléments) ou 3500W (6 éléments).

Température ambiante: -20+60°C.

Poids net: 8.3kg.

Références avec thermostat mécanique 4-40°C, différentielle inférieure à 1°C						
Corps e	n acier peint		Corps en acier inoxydable 304			
Références	Puissance (W) Tension (V) Références Puissance (W) Tensio					
9CBS7T32023175HB	1750	230	9CBS7T32023175H4	1750	230	
9CBS7T62023350HB	3500	230	9CBS7T62023350H4	3500	230	
9CBT7T62040350HB	3500	3 × 400	9CBT7T62040350H4	3500	3 × 400	

Références avec thermostat électronique 4-40°C, différentielle inférieure à 0.3°C							
Corps en acier peint Corps en acier inoxydable 304							
Références	Références Puissance (W) Tension (V) Références Puissance (W) Tension						
9CBX7T32023175HB	1750	230	9CBX7T32023175H4	1750	230		
9CBX7T62023350HB	3500	230	9CBX7T62023350H4	3500	230		
9CBX7T62040350HB	3500	3 × 400	9CBX7T62040350H4	3500	3 × 400		


Section 7 Radiants infrarouge

En raison de l'évolution technique constante de nos produits, les plans, dessins, photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

Nous contacter www.ultimheat.com

Radiants infrarouge

Eléments radiants infra-rouge a haute émissivité, sous capot Type 9MH

Applications

Ces tubes rayonnent dans l'infrarouge entre 3 et 6µ. Ils se caractérisent par une émissivité proche de 100% dans cette zone, une température de surface peu élevée, une forte résistance mécanique et une forte résistance à la corrosion. Ils sont particulièrement adaptés au chauffage, séchage, ou polymérisation d'une grande partie des matériaux usuels, ou ils permettent une économie importante par rapports aux moyens traditionnels de chauffage par convection. Ils peuvent être utilisés pour:

- Maintien en température de produits exposés en fastfoods, restaurants, supermarchés (voir résultats de mesure en fin de ce catalogue)
- Séchage à basse température du cuir, bois, impressions et teintures, peintures, email céramique, aliments, poissons. Polymérisation de vernis sur métal dans l'automobile, l'électroménager et industries similaires
- Réchauffage de matières plastiques pour formage
- Stérilisation d'appareils et équipements médicaux ou alimentaires
- Réchauffage ambiant extérieur

communiqués sans engagement et peuvent être modifiés sans préavis

- Réchauffage de poste de travail en atelier
- Réchauffage de locaux d'élevage

Caractéristiques techniques.

Tube radiant: voir caractéristiques en page 9

Boitier: 95 × 110mm, en acier inoxydable 304, avec ouïes de ventilation arrière, longueurs 410mm (16") et 710mm (28"). Nombreuses autres longueurs sur demande.

Réflecteur: parabolique en aluminium poli

Puissance surfacique moyenne: 3W/cm². (Autres valeurs sur demande si la longueur d'onde doit être modifiée) Temps de chauffe: inférieur à 5 minutes (Depuis la température ambiante jusqu'à la stabilisation)

Température de surface: 400 à 450°C@25°C. Grille de protection: sur demande, en accessoire

Raccordement: livré avec cordon 2 mètres, H05VVF 3 × 1.5mm² fiche euro 16A avec terre. Version câble UL sur demande. Montage: 3 versions existantes: montage mural fixe (A), montage mural orientable (B) et montage suspendu (C)

Interrupteur: interrupteur bipolaire marche arrêt

Protection: IP40 (IP44 pour modèle suspendu avec chicane de protection)

Tension: 230V en standard. Autres tensions sur demande (Minimum de mise en fabrication applicable)

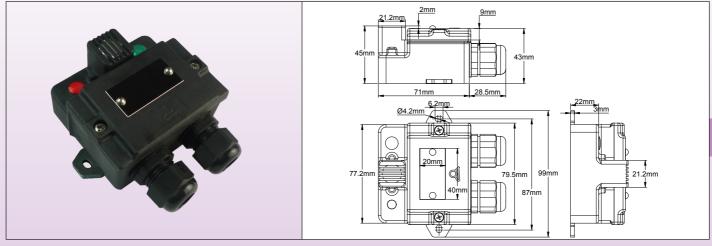
Régulation de puissance: voir les appareils spécifiques P35 et 36

Options:

- Autres longueurs, de 280 to 1850mm (11" to 72") couvrant toute la gamme des applications culinaires en réchauffage des aliments
- Modèles groupant plusieurs tubes côte à côte, sur le même plan, ou sur un plan cylindrique pour réaliser des panneaux rayonnants.

Références principales

Longueur hors tout	Puissance (Watts)	Montage	Références
410	525	Mural fixe (A)	9MHP290H23052SF1
410	525	Mural orientable (B)	9MHP290H23052SR1
410	525	Asuspendre (C)	9MHP290H23052SS1
710	1100	Mural fixe (A)	9MHP590H23110LF1
710	1100	Mural orientable (B)	9MHP590H23110LR1
710	1100	A suspendre (C)	9MHP590H23110LS1


Nous contacter www.ultimheat.com Cat24-2-7-3

En raison de l'évolution technique constante de nos produits, les plans, dessins, photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

Nous contacter www.ultimheat.com Cat24-2-8-1

Thermostat d'ambiance ou antigel IP65 à température fixe, sortie par presse étoupes, deux voyants

Type Y22

Applications

Mesure de la température ambiante en intérieur ou en extérieur, avec ouverture ou fermeture d'un contact électrique à une valeur prédéterminée non réglable. Peut servir d'alarme ou de mise en route de systèmes de dégivrage. Dans ces appareils, le thermostat à température fixe de type bimétallique, surmoulé, est thermiquement isolé de la paroi sur laquelle il est monté, et sa surface de mesure est mécaniquement protégée par une grille. Il est situé en avant

Caractéristiques techniques

Montage: Mural, par pattes de fixation latérales externes. Ces pattes peuvent être repliées vers l'intérieur.

Protection: IP65, et IK 03 Sur la grille de protection du thermostat, IK10 sur le reste du boîtier

du coffret afin de se trouver dans une zone de circulation naturelle de l'air ambiant.

Matière: ABS-PC noir chargé fibre de verre

Visserie: Inox, imperdable

Sortie: 2 Presse étoupes M20, PA66, IP66, pour câbles de 6 à 12mm

Pouvoir de coupure: Unipolaire 8 à 16A 250V (100000 cycles). Réalisable en contact à ouverture par élévation de température ou à fermeture par élévation de température

Lampes témoins: permettent de visualiser la présence de tension d'alimentation et l'état de sortie du contact du thermostat (L'alimentation 230V phase et neutre est nécessaire pour les lampes témoin)

Identification: Le couvercle comporte un logement pour une plaque d'identification rivetée de 20 × 40mm ou une

étiquette

Personnalisation: Sur demande (Quantité minimale à respecter)

Raccordement: Sur bornier à vis incorporé 4mm²

Options:

- Autres températures
- Boitier couleur crème
- Lampes témoin 115V

Température d'ouverture (°C/°F)	Température de fermeture (°C/°F)	Pouvoir de coupure	Application	Références
8°C/46.4°F	3°C/37.4°F	8A 250V	Détection de gel, mise en marche de système de dégivrage ou de chauffage	Y22D9J00806USUSA
10°C/50°F	4°C/39.2°F	10A 250V	Détection de gel, mise en marche de système de dégivrage ou de chauffage	Y22D9K01006USUSA
10°C/50°F	4°C/39.2°F	16A 250V	Détection de gel, mise en marche de système de dégivrage ou de chauffage	Y22D9L01006USUSA
30°C/86°F	20°C/68°F	10A 250V	Détection de surchauffe de locaux d'habitation, arrêt du chauffage	Y22D9K03006USUSA
20°C/68°F	30°C/86°F	10A 250V	Détection de surchauffe de locaux d'habitation, alarme (contact à fermeture)	Y22D9K02006USUSA
70°C/158°F	60°C/140°F	10A 250V	Détection d'incendie (résiste aux projections d'eau des sprinklers)	Y22D9K07006USUSA

Cat24-2-8-3 Nous contacter www.ultimheat.com

Thermostats d'ambiance à bulbe « queue de cochon », boitier IP44

Type Y036G

Applications

Contrôle ou régulation de la température ambiante dans des locaux professionnels, lorsqu'une bonne protection aux projections de liquides ou aux poussières est demandée.

Caractéristiques techniques

Boitier: IP44, 77.5 × 54 × 53mm (Hors manette et presse étoupe), en PC-ABS, noir, UL94-VO. Bonne résistance à l'impact et aux UV. Platine de fixation murale avec pattes plastique amovibles

Alimentation électrique: Presse étoupe M16

Réglage: Par manette graduée en °C. (Manettes graduées en °F disponibles en option).

Elément sensible: Bulbe à dilatation de liquide. La mesure de température est réalisée par un bulbe queue de cochon situé sur le côté du boitier

Plages de réglage: 4-40°C (40-105°F), autres plages possibles avec capillaire 1.5m et bulbe droit: -35+35°C (-30+95°F), 30-90°C (85-195°F), 30-110°C (90-230°F), 50-200°C (120-390°F), 50-300°C (120-570°F)

Raccordement: Sur bornes à vis

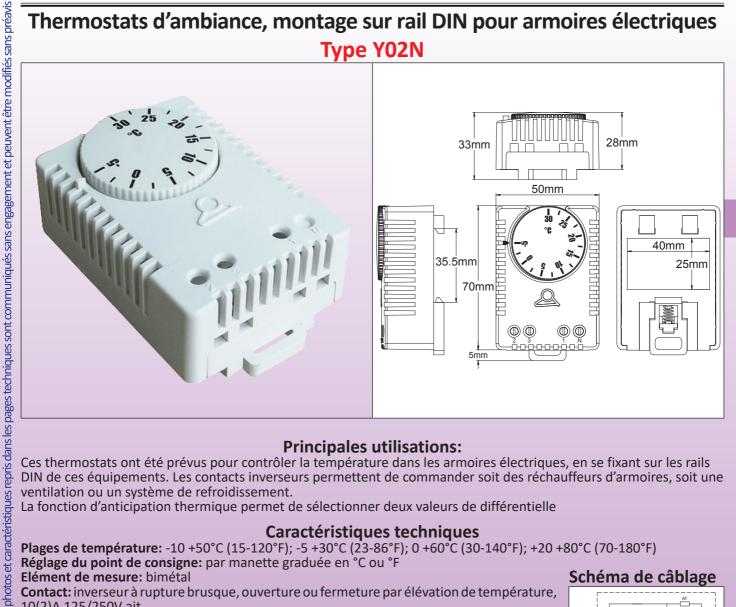
Fixation: Murale, par deux pattes latérales amovibles, pour vis dia 4mm sur la paroi, entre axe 62mm

Contact: Inverseur Pouvoir de coupure:

- Contact à ouverture par hausse (C-1): 16A (2.6) 250V ait.
- Contact à fermeture par hausse (C-2): 6A (0.6) 250V ait.
- Durée de vie électrique >100,000 cycles.

Références principales

Références	Plages de température	Différentielle	Température maxi sur le bulbe
Y036GA004040QB3J	4-40°C	3±2°C	60°C
Y036GA004040QB3K	40-105°F	5.5±4°F	140°F


Impression des manettes

Graduations en °F	Graduations en °C
40-105°F	4-40°C
100 % 100 %	40 25

Mise à jour 2025/02/25

Cat24-2-8-4 Nous contacter www.ultimheat.com

Thermostats d'ambiance, montage sur rail DIN pour armoires électriques

Principales utilisations:

Ces thermostats ont été prévus pour contrôler la température dans les armoires électriques, en se fixant sur les rails DIN de ces équipements. Les contacts inverseurs permettent de commander soit des réchauffeurs d'armoires, soit une ventilation ou un système de refroidissement.

La fonction d'anticipation thermique permet de sélectionner deux valeurs de différentielle

Caractéristiques techniques

Plages de température: -10 +50°C (15-120°F); -5 +30°C (23-86°F); 0 +60°C (30-140°F); +20 +80°C (70-180°F)

Réglage du point de consigne: par manette graduée en °C ou °F

Elément de mesure: bimétal

Contact: inverseur à rupture brusque, ouverture ou fermeture par élévation de température,

10(2)A 125/250V ait.

Durée de vie électrique: >10,000 cycles à l'intensité nominale

Résistance de contact: <10m0hm Raccordement électrique:

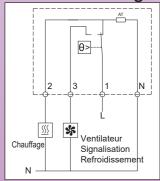
- 4 bornes à vis pour fils de 1.5mm². La borne de neutre ne sert que pour l'utilisation avec

anticipateur thermique (réducteur de différentielle)

Attention: En standard, l'anticipateur thermique (TA) est câblé pour usage en 230V.

Montage: par clips sur rail DIN EN 50022 largeur 35mm

Boîtier: UL94 VO, PC-ABS, gris RAL 1010

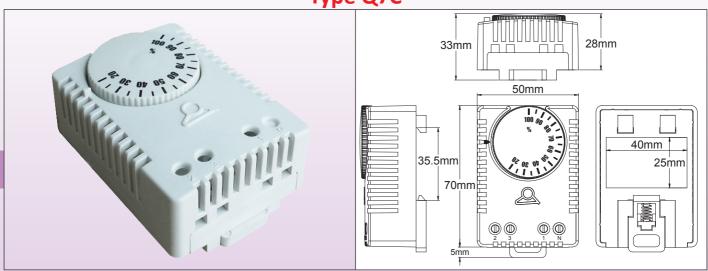

Dimensions: $70 \times 50 \times 33$ mm

Plage d'utilisation: $-20 \text{ to } +80^{\circ}\text{C} (-4 \sim +176^{\circ}\text{F})$

Indice de protection: IP30

En raison de l'évolution technique constante

Schéma de câblage


Références principales (Avec anticipateur thermique 230V)*

	Modèles en °C			Modèles en °F			
Plages de réglage (°C)	Différentielle, °C anticipateur thermique non connecté	Différentielle, °C anticipateur thermique connecté	Références	Plages de réglage (°F)	Différentielle, °F anticipateur thermique non connecté		Références
-10 +50°C	6°C±3°C	4°C±2°C	Y02NAC-10050114L	15-120°F	11±4°F	7±3°F	Y02NAC-10050114P
-5 +30°C	6°C±3°C	4°C±2°C	Y02NAC-10050114L	23-86°F	11±4°F	7±3°F	Y02NAC005035114P
0 +60°C	6°C±3°C	4°C±2°C	Y02NAC005035114L	30-140°F	11±4°F	7±3°F	Y02NAC000060114P
+20 +80°C	6°C±3°C	4°C±2°C	Y02NAC020080114L	70-180°F	11±4°F	7±3°F	Y02NAC020080114P

- Modèle avec anticipateur 115V: remplacer 114 dans la référence, par 115
- Modèle avec anticipateur 24V: remplacer 114 dans la référence, par 112

Nous contacter Cat24-2-8-5 www.ultimheat.com

Hygrostats d'armoires montage sur rail DIN Type Q7C

Applications

La condensation dans les armoires électriques et les armoires peut être critiques pour les composants électriques et la sécurité. Cet hygrostat miniature est conçu pour mettre en marche un rèchauffeur ou un ventilateur lorsque l'humidité relative s'élève à un niveau dangereux, quand il y a un risque d'atteindre le point de rosée généralement autour de 65%. Il peut également être utilisé pour commander des humidificateurs, déshumidificateurs, ou d'autres appareils. Il se monte sur un rail DIN normalisé

Caractéristiques techniques

Élément de mesure d'humidité: Film polymère hygroscopique avec traitement spécial, réalisé par Ultimheat, garantissant une réponse rapide, une longue durée de vie et une grande stabilité

Plage de réglage: de 35 à 95% d'H.R.

Précision de mesure: ±5% HR

Différentielle à 50% HR: 4% HR (±3% HR)

Milieu de mesure: air, sans pression, non agressif

Pouvoir de coupure:

Contact inverseur 10A250VAC,

Raccordement: 3 bornes à vis pour 1.5mm 2 fils, Couple max 0.5Nm

Montage: clip pour rail DIN 35mm EN 50022

Température de fonctionnement: 0 à +60°C (+32 à +140°F) Température de stockage: -20 à +70°C (-4 à +158 F)

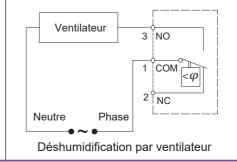
Position de montage: verticale

Tension d'alimentation: l'hygrostat doit être mont de façon qu'il n'y ait pas d'accumulation de condensat sur ou dans le dispositif. Si la tension d'alimentation est supérieure à 48V il existe un risque de formation d'arc électrique en cas de condensation sur l'interrupteur ou sur les bornes de connexion, ce qui peut détruire l'appareil.

Classe de protection: IP30 Dimension: 67 × 50 × 36mm

Entretien: Le film du capteur d'humidité ne demande pas d'entretien en air propre. De l'air contenant des solvants peut entraîner des erreurs de mesure ou la destruction du film, en fonction de leur type et de leur concentration. Des dépôts tels que les aérosols de colles, de peinture, et fumées diverses, qui finissent par former un film hydrofuge sur le film

Schéma de raccordement

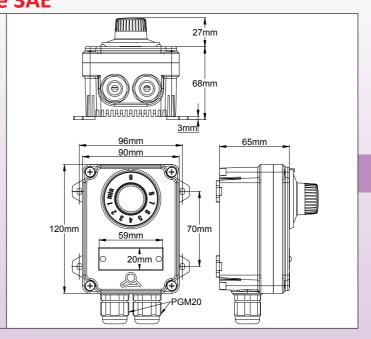

sont nocifs

Référence: Q7C0301001001R00

Déhumidificateur / Réchauffeur d'armoire 3 NO 1 COM < φ 2 NC Neutre Phase

Raccordement en déshumidification

Neutre Phase 3 NO 1 COM φ Humidificateur 2 NC Raccordement en humidification


Cat24-2-8-6 Nous contacter www.ultimheat.com

caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

Systèmes de régulation et de contrôle pour le réchauffage de l'air

Doseurs d'énergie électromécaniques sous boitier miniature IP54. Type 3AE

Applications

Permet le réglage économique de la puissance d'éléments chauffants à forte inertie thermique (système thermique cyclique), utilisation en en locaux professionnels, locaux d'élevage, locaux industriels.

Caractéristiques principales

Affichage de la consigne: par manette graduée de min à 8.

La position min correspond à environ 5% de la puissance et la position 8 à environ 100%. La courbe de réponse n'est pas linéaire.

La position 0 correspond à une coupure bipolaire de la sortie de puissance.

Sortie: Ouverture et fermeture cyclique d'un contact, avec une durée de cycle d'environ 20 à 30 secondes, utilisable sur les éléments chauffants à forte inertie thermique ou chauffants par convection. Non utilisable sur des éléments infrarouge a faible inertie thermique.

Pouvoir de coupure: 12A24 to 250V (8A in 400V)

Boitier: 120 × 70 × 65mm, partie arrière en aluminium, avec ailettes de refroidissement, partie avant en PA66 noir.

Classe de protection: IP54

Fixation: murale par 4 pattes amovibles, entre axe 70 × 96mm

Raccordement interne: sur bornier céramique 4 bornes 6mm² (2 bornes alimentation, 2 bornes sortie). 2 bornes de

Entrée-Sortie des câbles: par 2 presse-étoupes M20 en polyamide.

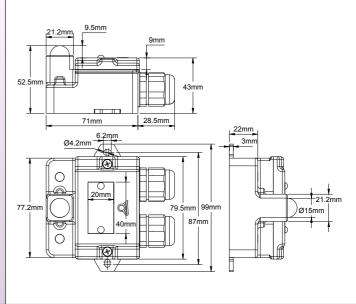
Tension résiduelle en position zéro: 0V Courant de fuite en position zéro: 0 mA Température ambiante: -20 +100°C Tension d'isolement: 1500VAC

Résistance d'isolement: $50M\Omega/500VDC$

Note importante:

- Monter cet appareil sur une ligne munie d'un système de protection par disjoncteur approprié.

- N'est pas utilisable pour la régulation de vitesse de moteurs


Références principales

Référence	Tension	Référence	Tension
3AER102TF024V	24	3AER101TF230V	230
3AER102TF048V	48	3AER104TF400V	400
3AER105TF110V	110		

Cat24-2-8-7 Nous contacter www.ultimheat.com

Thermostats fixes pour régulation dans l'infrarouge Type Y23

Applications

Thermostats à disque à température fixe, sous corps noir hémisphérique. Le thermostat à disque réagit à la chaleur produite par l'absorption du rayonnement infrarouge par le corps noir dans lequel il est situé. Utilisation en en locaux professionnels, locaux d'élevage, locaux industriels.

Caractéristiques

La mesure correcte de la température rayonnée nécessite de positionner l'appareil à un endroit où il est exposé directement au rayonnement. Dans ces boîtiers, le thermostat est thermiquement isolé de la paroi sur laquelle il est monté, et ne mesure que la température résultante de l'absorption par le corps noir additionné à la température ambiante.

Boitier: $77.2 \times 71 \times 52.5$ mm, PC-ABS noir.

Classe de protection: IP65

Fixation: murale par 2 pattes amovibles, entre axe 87mm

Raccordement interne: sur bornier 6 bornes 4mm² (2 bornes alimentation, 2 bornes sortie, 2 bornes de terre).

Entrée-Sortie des câbles: par 2 presse-étoupes M20 en polyamide.

Pouvoir de coupure: 15A 250V

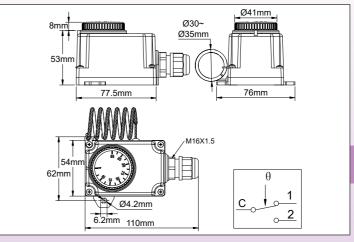
Températures de déclenchement: voir tableau

Autres températures possibles (minimum de commande applicable)

Température ambiante: -20 +70°C Tension d'isolement: 2000VAC

Résistance d'isolement: 500MQ/500VDC

Principales références


	۰	С	°F		
Références	Température d'ouverture	Température de fermeture	Température d'ouverture	Température de fermeture	
Y23D7J03308C1C10	33	25	91.4	77	
Y23D7Q04511C1C10	34*	45*	93.2	113	
Y23D7J04010C1C10	40	30	104	86	
Y23D7J05010C1C10	50	40	122	104	
Y23D7J05510C1C10	55	45	131	113	
Y23D7J06010C1C10	60	50	140	122	
Y23D7J07010C1C10	70	60	158	140	

^{*} fermer le contact de montée en température.

Mise à jour 2025/02/25

Ampoule et thermostat capillaire pour Chauffage infrarouge, boîtier ip44 **Type 038G**

Applications

Ces thermostats réglables ont un bulbe spiralé spécialement traité pour absorber le rayonnement infrarouge.

La mesure correcte de la température rayonnée nécessite de positionner l'appareil à un endroit où il est exposé directement au rayonnement. Dans ces boîtiers, le thermostat ne mesure que la température résultante de l'absorption du rayonnement infrarouge par le bulbe noir additionné à la température ambiante. Utilisation en en locaux professionnels, locaux d'élevage, locaux industriels

Main features

Boitier: IP44, 77.5 × 54 × 53mm (Hors manette et presse étoupe), en PC-ABS, noir, UL94-V0. Bonne résistance à l'impact et aux UV.

Platine de fixation murale avec pattes plastique amovibles

Alimentation électrique: Presse étoupe MI 6

Réglage: Par manette graduée en °C.

Manettes graduées en °F disponibles en option.

Elément sensible: Bulbe à dilatation de liquide. La mesure de température est réalisée par un bulbe queue de cochon

situé sur le côté du boitier

Plages de réglage: 4-40°C (40-105°F) Raccordement: Sur bornes à vis

Fixation: Murale, par deux pattes latérales amovibles, pour vis dia 4mm sur la paroi, entre axe 62mm

Contact: Inverseur Pouvoir de coupure:

repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

En raison de l'évolution technique constante de nos produits, les plans, dessins,

- Contact à ouverture par hausse (C-1): 16A (2.6) 250V ait.
- Contact à fermeture par hausse (C-2): 6A (0.6) 250V ait.
- Durée de vie électrique >100,000 cycles.

Références

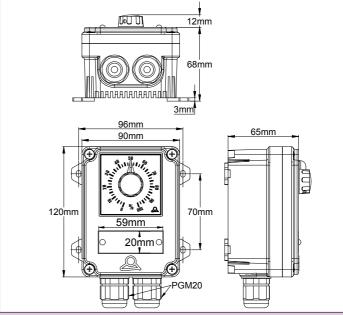
°C		°F		Diamiltus			Town fundame
Références (°C)	Plages de température (°C)	Références (°C)	Plages de température (°C)	Diamètre du bulbe (D, mm)	Longueur du bulbe (L, mm)	Différentielle °C (°F)	Température maxi sur le bulbe °C (°F)
Y038GA004040QO3J	4-40°C	Y038GA004040AA3K	40-105°F	Dia 3	Dia 35 × 40mm coiled	3±2 (5.5±4)	60 (140)
Y038GA004040AO6J	4-40°C	Y038GA004040AO6K	40-105°F	6	140 straight	3±2 (5.5±4)	60 (140)

Également disponible avec bouton imprimé 0 - 10 ou bouton imprimé croissant

Impression des manettes

Graduations en °F	Graduations en °C	Graduation décimale	Croissant
40-105°F	4-40°C	0-10	4-40°C
1/0 g g 1	40 %		

Mise à jour 2025/02/25


Cat24-2-8-9

Nous contacter www.ultimheat.com

Régulateurs de puissance pour résistances infrarouge, 10 à 20A. Boitier IP65 de taille réduite, avec ailettes de refroidissement intégrées.

Type 3AS

Applications:

Gradateurs électroniques avec relais statique, permettant de doser la puissance des émetteurs infrarouge entre 5% et 100% de leur valeur nominale.

Utilisation en en locaux professionnels, locaux d'élevage, locaux industriels

Caractéristiques principales:

Affichage de la consigne: par potentiomètre gradué en % de la puissance.

Sortie: modulée en trains d'ondes avec coupure au zéro (pas de parasites radio-électriques), avec temps de cycle de 10ms, utilisable sur les émetteurs infrarouges moyen et long à faible inertie thermique.

Boitier: 120 × 70 × 65mm, partie arrière en aluminium, avec ailettes de refroidissement, partie avant en PA66 noir.

Classe de protection: IP54

Fixation: murale par 4 pattes amovibles, entre axe 70 × 96mm

Raccordement interne: sur bornier céramique 4 bornes 6mm² (2 bornes alimentation, 2 bornes sortie). 2 bornes de

terre.

Entrée-Sortie des câbles: par 2 presse-étoupes M20 en polyamide.

Tension résiduelle en position zéro: <1.5V Courant de fuite en position zéro: <4mA Température ambiante: -20+70°C Tension d'isolement: 2000VAC

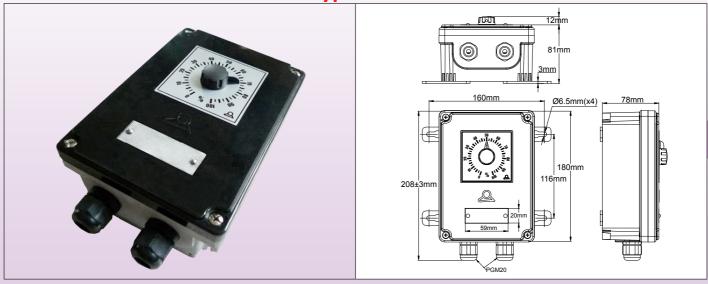
Résistance d'isolement: 500MQ/500VDC

Note importante:

- Comme tous les relais statiques, cet appareil dissipe environ 0.5% de la puissance par effet joule.
- Monter cet appareil sur une ligne munie d'un interrupteur marche arrêt et d'un système de protection par disjoncteur approprié.
- N'est pas utilisable pour la régulation de vitesse de moteurs

Références

Références	Intensité maximale	Tension	Références	Intensité maximale	Tension
3ASN30100110	10A	220-240V	3ASN30700110	10A	380-400V
3ASN30100120	20A	220-240V	3ASN30700120	20A	380-400V


Cat24-2-8-10 Nous contacter www.ultimheat.com

ues repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

Systèmes de régulation et de contrôle pour le réchauffage de l'air

Régulateurs de puissance pour résistances infrarouge, 25 à 60A, IP65, avec ailettes de refroidissement intégrées.

Type 3AY

Applications:

Gradateurs électroniques avec relais statique, permettant de doser la puissance des émetteurs infrarouge entre 5% et 100% de leur valeur nominale.

Utilisation en en locaux professionnels, locaux d'élevage, locaux industriels

Caractéristiques principales:

Affichage de la consigne: par potentiomètre gradué en % de la puissance.

Sortie: modulée en trains d'ondes, avec coupure au zéro (pas de parasites radio-électriques), avec temps de cycle de 10ms utilisable sur les émetteurs infrarouges moyen et long à faible inertie thermique.

Boitier: 180 × 130 × 78mm, partie arrière en aluminium, avec ailettes de refroidissement, partie avant en PA66 noir.

Classe de protection: IP65, avec joint d'étanchéité sur l'axe de réglage

Fixation: murale par 4 pattes amovibles et orientables, entre axe 160 × 116mm

Raccordement interne: sur bornier céramique 4 bornes 6mm² (2 bornes alimentation, 2 bornes sortie). 2 bornes de

Entrée-Sortie des câbles: par 2 presse-étoupes M20 en polyamide.

Sécurité de surchauffe: par limiteur de température, ouvre à 80°C, à réarmement automatique.

Interrupteur marche arrêt bipolaire: disponible sur les modèles 25A220-240V uniquement (ne permet pas le réglage

de puissance entre 0 et 20%)

Tension résiduelle en position zéro: <1.5V Courant de fuite en position zéro: <4mA Température ambiante: -20+70°C Tension d'isolement: 2000VAC

Résistance d'isolement: 500MQ/500VDC

raison de l'évolution technique constante

Ш

- Comme tous les relais statiques, cet appareil dissipe environ 0.5% de la puissance par effet joule.
- Monter cet appareil sur une ligne munie d'un interrupteur marche arrêt et d'un système de protection par
- N'est pas utilisable pour la régulation de vitesse de moteurs

Références

Références	Intensité maximale	Tension	Références	Intensité maximale	Tension
3AYM30100125*	25A	220-240V	3AYN30700125	25A	380-400V
3AYN30100125	25A	220-240V	3AYN30700140	40A	380-400V
3AYN30100140	40A	220-240V	3AYN30700160	60A	380-400V
3AYN30100160	60A	220-240V			

Modèles avec interrupteur à 2 pôles

Cat24-2-8-11 Nous contacter www.ultimheat.com

La gamme des catalogues

www.ultimheat.com

Constructeur de composants électromécaniques et de sous-ensembles électrothermiques

- · Thermostats mécaniques
- · Sécurités mécaniques unipolaires et tripolaires · Détecteurs de débit
- Thermostats et sécurités ATEX
- Rechauffeurs de liquides
- Thermoplongeurs
- Elements chauffants pour air et liquides
- Blocs de jonction

- · Boîtiers pour milieux corrosifs
- Détecteurs de niveau
- Pressostats et télécommandes pneumatiques
- Fusibles eutectiques de déclencheurs thermiques
- Equipements de traçage électrique
- Solutions sur mesure

D